Substitution in Octahedral Metal Complexes (continued)

We have seen that substitution kinetics are influenced by the **metal** in I_D mechanisms:

- d count effects (Jahn-Teller effects, $\Delta CFSE$)
- metal ion charge
- 2^{nd} and 3^{rd} row effects (slower substitution due to increased M-L bond strength and larger $\Delta CFSE$)

But what about ligand effects?

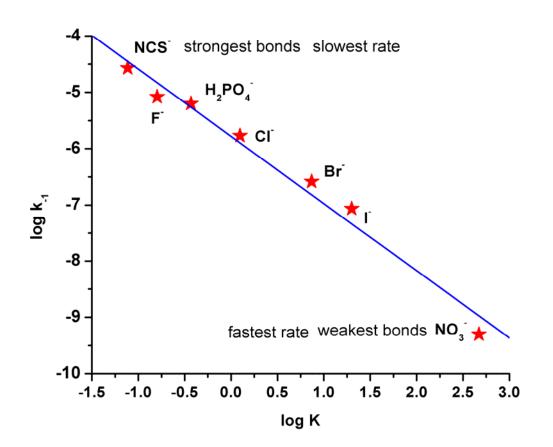
1) Entering vs. leaving group effects in an I_D mechanism

• entering group shouldn't matter much (post rate step)

 $[Ni(H_2O)_6]^{2+} + L \rightarrow [Ni(H_2O)_5(L)]^{n+} + H_2O$

L	log k
F	3.9
SCN^{-}	3.8
$CH_3CO_2^-$	4.3
NH_3	3.5
H_2O	4.4

• leaving groups should have a large effect on rate (bond breaking involved in the rate step)


k₁ for $[Co(NH_3)_5(X)]^{2+} + H_2O \rightarrow [Co(NH_3)_5(H_2O)]^{3+} + X^{-}$

K for $[Co(NH_3)_5(H_2O)]^{3+} + X^- \implies [Co(NH_3)_5(X)]^{2+} + H_2O$

L	k (s ⁻¹)	K (M ⁻¹)	
NCS	5.0 x 10 ⁻¹⁰	470	
F ⁻	8.6 x 10 ⁻⁸	20	
$H_2PO_4^-$	2.6 x 10 ⁻⁷	7.4	
Cl	1.7 x 10 ⁻⁶	1.25	
Br	6.3 x 10 ⁻⁶	0.37	
I-	8.3 x 10 ⁻⁶	0.16	
NO_3^-	2.7 x 10 ⁻⁵	0.077	

- K gives a measure of the ground state bond strengths for complexes with X⁻ relative to water (K = k₁/k₋₁)
- k₋₁ gives a measure of the rate of water displacing X⁻ (aquation)

Since the M-X bond is breaking in the transition state of aquation in an ID mechanism it **SHOULD** reflect the strength of that bond, as does the equilibrium constant K: a plot of log K vs. log k_{-1} should therefore be linear (a linear free energy relationship, LFER):

- 2) Effects of spectator (ancillary) ligands on I_D rates
- a) transition state is 5-coordinate square pyramidal: metal suffers a loss of electron density relative to the ground state

How will the electron donating or withdrawing properties of the ancillary ligands affect the rate of substitution of another ligand?

- better σ and π -donors will stabilize (lower the energy of) the transition state, increasing the rate of reaction
- π -acceptors will destabilize the transition state and slow the reaction down

 $[NiL_5X]^+ + H_2O \rightarrow [NiL_5(H_2O)]^{2+} + X^-$

rate for $L = NH_3 >> L = H_2O$; NH_3 is a better σ -donor

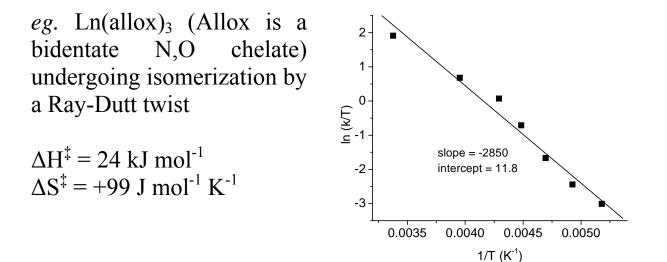
b) size effects: bigger ligands destabilize higher coordination numbers (i.e. ground state) relative to smaller coordination numbers (i.e. transition state)

 $cis-[Mo(CO)_4(L)_2] + CO \rightarrow [Mo(CO)_5L] + L$

 $L = PPh_3 > Ph_2PMe > PhPMe_2$

Other indicators of reaction mechanism

things already mentioned indirectly...


• rate laws, order of reaction and sensitivity of rates to identity of the incoming ligand

1) entropy of activation, ΔS^{\ddagger}

Eyring equation (a theoretical derivation from transition state theory) allows determination of ΔH^{\ddagger} and ΔS^{\ddagger} by measurement of the T dependence of the rate constant:

$$\ln(k/T) = -\Delta H^{\ddagger}/RT + \Delta S^{\ddagger}/R$$

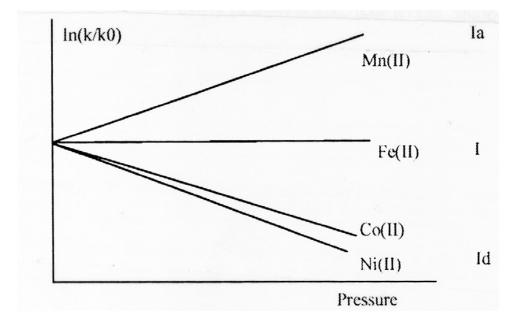
plot ln(k/T) vs. 1/T gives a straight line of slope $-\Delta H^{\ddagger}/R$ and intercept $\Delta S^{\ddagger}/R$ where T is in K and R is the gas constant (8.3144 J mol⁻¹ K⁻¹)

- negative entropy of activation implies a more ordered (and presumably associative) transition state
- positive entropy of activation implies a less ordered (and presumably dissociative) transition state

But careful...

- errors in ΔS^{\ddagger} are typically very large
- changes in entropy could be due to other effects (differential solvation of the ground and transition state)

2) volume of activation, ΔV^{\ddagger}


From the pressure dependence of the equilibrium constant:

$$(\partial \ln k/\partial P)_{\rm T} = -\Delta V^{\ddagger}/RT \text{ OR } \Delta V^{\ddagger} = -RT(\partial \ln k/\partial P)_{\rm T}$$

so the negative of the slope of a lnk vs. P plot gives ΔV^{\ddagger}

ΔV^{\ddagger} can tell us about volume changes going to the transition state:

- positive volume changes imply I_D (or D) mechanisms
- negative volume changes imply I_A (or A) mechanisms

$[M(H_2O)_6]^{2+}$	d count	rate	$\Delta { m V}^{\ddagger}$	mechanism
V	d ³	87	-4.1	I _A
Mn	d ⁵ hs	2.1 x 10 ⁷	-5.4	I _A
Fe	d ⁶ hs	4.4 x 10 ⁶	3.8	I _D
Co	d ⁷ hs	3.2 x 10 ⁶	6.1	I _D
Ni	d ⁸	3.2 x 10 ⁴	7.2	I _D