
423/523 Organometallic Chemistry

Problem set 2

- 1. Assign the oxidation state of each M. Assuming the 18-electron rule applies, identify the 1st row transition metal and sketch the complex:
 - Co¹(CO)(CS)(PPh₃)₂Br (a)
 - $[\mathbf{V}^{\mathbf{I}}(CO)_7]^+$ (b)
 - $[(\eta^3-C_3Ph_3)(\eta^4-C_4H_4)Fe^{II}(NH_3)_2]^+$ (c)
 - $[(\eta^5-C_5H_5)(\eta^4-C_5H_6)N_i^{II}]^+$ $[(\eta^3-C_3H_5)C_0^{III}(CN)_4]^{2-}$ (d)
 - (e)
- 2. Assign the oxidation state of each M. Identify the 2^{nd} row transition metal and sketch the complex:
 - $(\eta^5-C_5H_5)(CO)_3Mo^I-Mo^I(CO)_3(\eta^5-C_5H_5)$ (a)
 - $(\eta^5 C_5 H_5)(CO)_2 Tc^I = Tc^I(CO)_2(\eta^5 C_5 H_5)$ (b)
 - $[\mathbf{Ru}^{-\mathbf{II}}(\mathbf{CO})_3(\mathbf{NO})]^{-1}$ (c) (linear NO)
 - $(\eta^4 C_8 H_8) \mathbf{Ru}^0 (CO)_3$ (d)
 - $[\mathbf{Rh}^{-1}(CO)_3(PMe_3)]^{-1}$ (e)
 - $(\eta^5-C_5H_5)(\eta^1-C_3H_5)(\eta^3-C_3H_5)_2\mathbf{Zr^{IV}}$ (f) (16-electron molecule)
- 3. What charge, z, would be necessary for the following to obey the 18-electron rule?
 - $[Ru(CO)_4(SiMe_3)]^{-1}$ (a)
 - $[(\eta^3 C_3 H_5) V (CNMe)_5]^0$ (b)
 - $[(\eta^5 C_6 H_7) Fe(CO)_3]^+$ (c)
 - $[(\eta^6-C_6H_6)_2Ru]^{+2}$ (d)
 - $[W(CO)_5(SnPh_3)]^{-1}$ (e)
- 4. A complex has the empirical formula Re(CO)₃Cl. How could it attain the 18-electron configuration without requiring any additional ligands?

(or triangular cluster, etc with single bonds)

- 5. Predict the hapticity (i.e. what is n in η^n) of each Cp ring in $(\eta^5 C_5H_5)(\eta^3 C_5H_5)W(CO)_2$, and the n in κ^n of each "triphos" ligand in $[Pd{\kappa^2-PPh_2CH_2CH_2}_3CPh]_2^{2+}$ (if 16e: 18e requires 1 κ^3 -, 1 κ^2 -).
- 6. Comment on the observation that the v(CO) band in $[Fe(CO)_6]^{2+}$ appears at 2203 cm⁻¹ (compare with free CO). Higher than free CO, so no back-bonding; electrons donated from slightly anti-bonding electron pair on CO strengthens the CO bond; +ve charge on iron lowers energy of d-orbitals & ability to back-bond.
- 7. When heated at low pressure, $(\eta^5-C_5Me_5)Rh(CO)_2$ reacts to give a gas and another product having a single peak in the ¹H NMR and a single band near 1850 cm⁻¹ in the infrared. Suggest a structure for this product. See right:

8. Predict the distribution of products when carbon monoxide is lost from cis-Mn(COMe)(CO)₄(¹³CO) assuming the reaction proceeds by deinsertion of CO (as opposed to Me migration, i.e. it is CO that moves to the vacant coordination site, not Me).