423/523 Organometallic Chemistry Problem set 3

1. Rationalise the following observations:
(a) On going from $\mathrm{Fe}(\mathrm{CO})_{5}$ to $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$, absorptions in the IR spectrum at 2025 and $2000 \mathrm{~cm}^{-1}$ are replaced by bands at 1944,1886 and $1881 \mathrm{~cm}^{-1}$.
(b) On forming $\operatorname{IrBr}(\mathrm{CO})\left\{\eta^{2}-\mathrm{C}_{2}(\mathrm{CN})_{4}\right\}\left(\mathrm{PPh}_{3}\right)_{2}$, the unique C -C bond in $\mathrm{C}_{2}(\mathrm{CN})_{4}$ lengthens from 135 to 151 pm .
(c) The Tolman cone angles of PPh_{3} and $\mathrm{P}\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}$ are 145°, but that of $\mathrm{P}\left(o-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}$ is 194°.
(d) A single $v(\mathrm{CO})$ band is observed for the ion $\left[\mathrm{Co}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$.
2. The reaction of $\left[\left(\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}(\mathbf{A})$ with $\mathrm{C}_{6} \mathrm{Me}_{6}$ in the presence of AgBF_{4} gives $\left[\left(\mathrm{C}_{6} \mathrm{Me}_{6}\right)_{2} \mathrm{Ru}\right]\left[\mathrm{BF}_{4}\right]_{2}$ containing cation B. Treatment of this compound with Na in liquid NH_{3} yields a neutral Ru0 complex, C. Suggest structures for \mathbf{A}, \mathbf{B} and \mathbf{C}.
3. List the following in order of decreasing reactivity towards trimethylamine oxide: $\mathrm{Mo}(\mathrm{CO})_{6}$, $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}, \mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2},\left[\mathrm{Mo}(\mathrm{CO})_{5}\right]^{2-}, \mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$, $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{NO})_{2}$. What physical data would you choose to measure as an aid to ordering these complexes?
4. NO^{+}is isoelectronic with CO and often replaces CO in substitution reactions, so it might seem the reaction below is favourable. Comment on whether the process is likely.

$$
\mathrm{Mo}(\mathrm{CO})_{6}+\mathrm{NOBF}_{4} \rightarrow\left[\mathrm{Mo}(\mathrm{NO})_{6}\right]\left[\mathrm{BF}_{4}\right]_{6}+6 \mathrm{CO}
$$

5. A complex with the empirical formula $\mathrm{Mn}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}(\mathrm{NO})_{4}$ has infrared absorptions at 1320 and $1495 \mathrm{~cm}^{-1}$ and a single peak in the ${ }^{1} \mathrm{H}$ NMR spectrum. Draw a plausible structure.
6. The product of reaction between PtCl_{2} and CO at high pressure and $20{ }^{\circ} \mathrm{C}$ has a molecular weight of 322 . Find the formula and suggest possible isomers. Comment on the probable relative MC and CO bond lengths in these isomers. Can vibrational spectroscopy be used to distinguish between isomers?
