Problem set 3

1. Draw the 3 most common 7-coordinate geometries.

The bulky, rigid tridentate ligand **NNN** is a good ligand for Ln³⁺ ions. Its rigidity means that it always coordinates in such a way as to occupy a triangular face:

NNN is sufficiently bulky that only 4 other ligands can bind to the metal. How many possible geometric isomers for $Ln(NNN)L_4$ (L = monodentate ligand) are there for each coordination geometry? [Q from 2004 midterm]

2. $Ln(NO_3)_3(18$ -crown-6) complexes have structures in which the 12 O atoms take up an icosahedral geometry around the lanthanide ion ("18-crown-6" is a crown ether, *cyclo*-{ CH_2CH_2O }₆). The 6 O atoms of the crown take up a boat rather than a chair conformation. By drawing the structure, explain why.

3. Explain why tungsten has the highest mp, bp and heat of atomization of any element.

[Q from 2004 midterm]