Problem set 5

1. Determine the enthalpies of formation for WCI, WCI₃ and WCI₆ using a Born-Haber cycle, calculating lattice energies using the Kapuskinskii equation.

- (i) WCI does not exist. What particularly large factor is mitigating against its formation?
- (ii) WCl_3 and WCl_6 do exist. Find out their actual structures, and describe them. Do either of these fit the description of a "simple ionic solid"?
- (iii) What do the Born-Haber cycle and Kapuskinskii equation fail to take into account?

IE_n(W) 770, 1700, 2300, 3400, 4600, 5900 kJ mol⁻¹; Δ H_a(W) 860 kJ mol⁻¹; Δ H_a(Cl₂) 244 kJ mol⁻¹; EA(Cl) 349 kJ mol⁻¹; r₊ 130 pm, r₃₊ 98 pm, r₆₊ 74 pm, r₋ 167 pm.

2. Calculate the enthalpy of formation of LnF_2 , LnF_3 and LnF_4 (Ln = pick a lanthanide element) using a Born-Haber cycle. Use the Kapuskinskii equation to calculate the lattice enthalpy. Get the data you need from *WebElements* (<u>http://www.webelements.com/</u>) or *Visual Elements* (<u>http://www.chemsoc.org/viselements/</u>).

WebElements lists all fluorides that are actually known for your element. Comment upon the existence or non-existence of LnF_2 and LnF_4 for your particular lanthanide in light of your calculated enthalpies of formation. If your element does not have known LnF_2 or LnF_4 compounds, name a lanthanide element that does and explain why.