Problem set 6

1. Give three stable isotopes that have odd numbers of both protons and neutrons.

2. Heteropolymetallates are structures in which a heteroatom is enclosed inside cavities formed by MO_6 octahedra, and is bonded to the oxygen atoms of the adjacent MO_6 octahedra. These compounds have been used as catalysts in the petrochemical industry and as flame retardants. The first well-characterised example was the α -Keggin ion, $[PW_{12}O_{40}]^{3-}$. The structure may be broken down as follows. Three WO_6 octahedra are arranged in a triangular fashion sharing edges. Four of these units are arranged tetrahedrally, sharing corners. The tetrahedral hole in the centre is occupied by the P atom.

Sketch the 3 edge-sharing WO_6 octahedra. Count the number of O atoms. How many must be corner-sharing? Indicate these on your diagram. Which O atom bonds to the heteroatom? Which O form double bonds to W? What is the oxidation state of W?

[Hint: an image search for "Keggin" on Google may help your analysis]

3. What is the most abundant third-row transition metal in the oceans? In what form do you expect it to be in? Calculate how much of this metal is dissolved in the world's oceans (volume \sim 1.37 billion km³). Given the abundance of this metal compared to some of the first-row transition metals, would you expect some forms of life to utilize the metal?

4. Explain why both ReO_3 and the tungsten bronzes are good conductors.