Problem set 7

1. Rationalise the following Mo-Mo bond distances:

$\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\right]$	209 pm
$\left[\mathrm{Mo}_{2}\left(\mathrm{SO}_{4}\right)_{4}\right]^{4-}$	211 pm
$\left.\left[\mathrm{Mo}_{2} \mathrm{Cl}_{8}\right]^{-}\right)^{3}$	214 pm
$\left[\mathrm{Mo}_{2}\left(\mathrm{SO}_{4}\right)_{4}\right]^{3-}$	217 pm
$\left[\mathrm{Mo}_{2}(\mathrm{HPO})_{4}\right)_{4}^{2-}$	223 pm
$\left[\mathrm{Mo}_{2}(\mathrm{TPP})_{2}\right]$	224 pm

2. The complex $\left[\mathrm{OsO}_{2}(\mathrm{OH})_{4}\right]^{2-}$ has a linear $\mathrm{O}=\mathrm{Os}=\mathrm{O}$ group. Construct a simplified MO diagram for the m-bonding in this complex assuming that $\mathrm{O}=\mathrm{Os}=\mathrm{O}$ lies along the z-axis and only the $d_{x y}, d_{x z}$ and $d_{y z}$ orbitals of the metal are involved. Do you expect the complex to be paramagnetic?
[Hint: Figure 8.1 from your Group 8 handout should be useful to you]
