Problem set 8

1. Interpret the following spectroscopic data:
(a) The IR spectrum of $\left[\mathrm{Co}_{3}(\mathrm{CO})_{10}\right]^{-}$has peaks at 2071, 2006, 1999, 1975, 1865 and $1584 \mathrm{~cm}^{-1}$.
(b) At 178 K , the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mu-\mathrm{H})_{3} \mathrm{Ru}_{4}(\mathrm{CO})_{12}\right]^{-}$exhibits three signals due to two isomers:

A: $\quad \delta-15.9, \mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}$, relative integral 2
$\delta-19.1, \mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}$, relative integral 1
$\mathrm{B}: \quad \delta-17.4, \mathrm{~s}$, relative integral 3.7
At room T, the cluster exhibits a singlet at $\delta \mathbf{- 1 6 . 9}$.
(c) The ${ }^{13} \mathrm{C}$ NMR spectrum of $R h_{6}(\mathrm{CO})_{16}$ shows two signals ($\delta 180, \mathrm{~d}, \mathrm{~J}=70 \mathrm{~Hz}$ and $\delta 232, \mathrm{q}, \mathrm{J}=$ 26 Hz). However, the ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{Rh}_{6}(\mathrm{CO})_{15}\right]^{2-}$ shows just one signal ($\delta 209$, septet, $J=14 \mathrm{~Hz}$).
2. Do the following molecules conform to the Effective Atomic Number rule: $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ (dimer), $\mathrm{FeRu}_{2}(\mathrm{CO})_{12}$ (triangle), $\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{12}$ (tetrahedron), $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\right]^{2-}$ (trigonal bipyramid), $\mathrm{Os}_{6}(\mathrm{CO})_{21}$ (raft), $\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{15}$ (square-based pyramid), $\left[\mathrm{Co}_{6} \mathrm{C}(\mathrm{CO})_{15}\right]^{2-}$ (trigonal prism), $\left[\mathrm{Co}_{6}(\mathrm{CO})_{15}\right]^{2-}$ (octahedron) and $\left[\mathrm{Os}_{8}(\mathrm{CO})_{22}\right]^{2-}$ (bicapped octahedron)?
3. Use PSEPT to predict the structure of the following clusters: $\mathrm{Fe}_{5} \mathrm{C}(\mathrm{CO})_{15},\left[\mathrm{Re}_{4}(\mathrm{CO})_{16}\right]^{2-}$, $\mathrm{H}_{2} \mathrm{Os}_{6}(\mathrm{CO})_{18}$ and $\mathrm{Os}_{9}(\mathrm{CO})_{25}$. Discuss the possibility of isomers for $\mathrm{Os}_{9}(\mathrm{CO})_{25}$.
4. Use the condensation principle to decide which of the following M_{8} cluster geometries corresponds to (i) $\mathrm{Rh}_{8} \mathrm{C}(\mathrm{CO})_{19}$, (ii) $\mathrm{Rh}_{8} \mathrm{C}_{2}(\mathrm{CO})_{18}$, (iii) $\left[\mathrm{Re}_{8} \mathrm{C}(\mathrm{CO})_{24}\right]^{2-}$ and (iv) $\left[\mathrm{Ir}_{8}(\mathrm{CO})_{22}\right]^{2-}$.

