Assignment 3 (5%) due in by 9.30 am Tuesday 16th March

(a) Determine the enthalpies of formation for WCl, WCl₃ and WCl₆ using a Born-Haber cycle, calculating lattice energies using the Kapuskinskii equation.

682, 104, -479 kJ mol⁻¹, respectively.

(i) WCl does not exist. What particularly large factor is mitigating against its formation?

High $\Delta H_a(W)$; compare Cs, <10% of the value for W.

(ii) WCl₃ and WCl₆ do exist. Find out their actual structures, and describe them. Do either of these fit the description of a "simple ionic solid"?

WCl₃ has a cluster structure, formula better written [W₆Cl₁₂]Cl₆. Retention of some M-M bonding means effectively not all of the ΔH_a need be spent. WCl₆ is a covalent molecule. Neither fit the description of simple ionic solid.

(iii) What do the Born-Haber cycle and Kapuskinskii equation fail to take into account?

M-M bonding, covalent bonding, alternate lattice geometries, etc. Question was intended to illustrate the poor applicability of the approach, especially to high oxidation state compounds.

IE_n(W) 770, 1700, 2300, 3400, 4600, 5900 kJ mol⁻¹; Δ H_a(W) 860 kJ mol⁻¹; Δ H_a(Cl₂) 244 kJ mol⁻¹; EA(Cl) 349 kJ mol⁻¹; r₊ 130 pm, r₃₊ 98 pm, r₆₊ 74 pm, r₋ 167 pm. [7 marks]

(b) Rationalize the following Mo-Mo bond distances [6 marks]:

Bond orders 4, 4, 4, 3.5, 3, 4 respectively. MeCO₂ "bite" better matched to Mo-Mo bond than SO₄; some Cl-Cl repulsion in chloride case. TPP ligand extremely bulky, large L-L repulsion lengthens bond.

(c) The complex $[OsO_2(OH)_4]^{2-}$ has a linear O=Os=O group. Construct a simplified MO diagram for the π -bonding in this complex assuming that O=Os=O lies along the *z*-axis and only the d_{xy} , d_{xz} and d_{yz} orbitals of the metal are involved. Do you expect the complex to be paramagnetic? [4 marks]

O hybridized sp. 2 each of bonding, non-bonding and antibonding MOs, as the picture is repeated in *xz* and *yz* planes. Compound is diamagnetic; all electrons are paired.

(d) RCM of a 1:1 mixture of reactants shown below produced phenanthrene and a 1:2:1 mixture of $C_2H_4:C_2H_2D_2:C_2D_4$. Account for the products formed. [3 marks]

This classic experiment was designed to illustrate the stepwise nature of the reaction (if the metal centre coordinated both alkenes simultaneously, you would end up with a 1:1 mixture of C_2H_4 and C_2D_4 . Essentially, after the first round of metathesis you end up with a 1:1 mixture of $M=CH_2$ and $M=CD_2$ which effectively go on to catalyze all subsequent RCM. As a result, you generate a statistical mixture of ethylenes.

- (e) Interpret the following spectroscopic data:
 - (i) The IR spectrum of $[Co_3(CO)_{10}]^-$ has peaks at 2071, 2006, 1999, 1975, 1865 and 1584 cm⁻¹.

Triangular cluster; has terminal, bridging, face-capping COs (1584 cm⁻¹ low for face-capping due to negative charge on cluster). Only symmetric way of arranging is to have two terminal COs per Co, a CO bridging each edge, and one face-capping CO.

(ii) At 178 K, the ¹H NMR spectrum of [(μ-H)₃Ru₄(CO)₁₂]⁻ exhibits three signals due to two isomers:

A: $\delta -15.9$, d, J = 2.5 Hz, relative integral 2

 δ –19.1, t, J = 2.5 Hz, relative integral 1

B: $\delta -17.4$, s, relative integral 3.7

At room T, the cluster exhibits a singlet at δ –16.9.

Electron counting predicts tetrahedral structure. At higher T, structure is fluxional; H migrates across cluster surface.

(iii) The 13 C NMR spectrum of Rh₆(CO)₁₆ shows two signals (δ 180, d, J = 70 Hz and δ 232, q, J = 26 Hz). However, the 13 C NMR spectrum of [Rh₆(CO)₁₅]²⁻ shows just one signal (δ 209, septet, J = 14 Hz).

Structure as shown below; 2 terminal CO per Rh, 4 tetrahedrally arranged face-capping CO ligands.

 $[Rh_6(CO)_{15}]^{2-}$ effectively has a similar arrangement of CO ligands but with a "vacant coordination site". As such, it is highly fluxional; all of the CO ligands are equivalent and they see the 6 Rh as equivalent.

The solution ³¹P NMR spectrum of the octahedral cluster PtRu₅C(CO)₁₄(PMe₂Ph)₂ shows (iv) five signals due to three isomers (note: J_{PtP} appear as satellites):

A:
$$\delta$$
 9.62, $J_{PtP} = 63 \text{ Hz}$
 δ -13.45, $J_{PtP} = 5999 \text{ Hz}$

B:
$$\delta$$
 4.35, $J_{PtP} = 63 \text{ Hz}$

C:
$$\delta - 1.11$$

¹⁰³Rh:

$$\delta - 11.80$$
, $J_{PtP} = 6111 \text{ Hz}$

[11 marks]

(f) How could NMR be used to determine the distribution of the metal atoms in the core of the trigonal prismatic cluster [Fe₃Rh₃(µ₆-C)(CO)₁₇]⁻? Consider both ¹⁰³Rh and ¹³C_{interstitial} nuclei. [4 marks]

(assignments are slightly different depending on whether you include diagonal as well as through-bond J_{Rh-Rh} couplings).

(g) Do the following molecules conform to the Effective Atomic Number rule: Co₂(CO)₈ (dimer), FeRu₂(CO)₁₂ (triangle), H₄Ru₄(CO)₁₂ (tetrahedron), [Os₅(CO)₁₅]²⁻ (trigonal bipyramid), Os₆(CO)₂₁ (raft), $Ru_5C(CO)_{15}$ (square-based pyramid), $[Co_6C(CO)_{15}]^{2-}$ (trigonal prism), $[Co_6(CO)_{15}]^{2-}$ (octahedron) and $[Os_8(CO)_{22}]^2$ (bicapped octahedron)? [3 marks]

All yes except the last two. Question intended to illustrate the limitations of the localized bonding approach.

(h) Use PSEPT to predict the structure of the following clusters: $Fe_5C(CO)_{15}$, $[Re_4(CO)_{16}]^{2-}$, H₂Os₆(CO)₁₈ and Os₉(CO)₂₅. Discuss the possibility of isomers for Os₉(CO)₂₅. [7 marks]

Square-based pyramid (nido); butterfly (arachno); octahedron (closo; though actual structure is capped nido); tricapped octahedron. Lots of isomers for Os₉(CO)₂₅; draw representative examples; one mark was for mentioning the possibility of capping caps.

(i) Use the condensation principle to decide which of the following M_8 cluster geometries corresponds to (i) $Rh_8C(CO)_{19}$, (ii) $Rh_8C_2(CO)_{18}$, (iii) $[Re_8C(CO)_{24}]^{2-}$ and (iv) $[Ir_8(CO)_{22}]^{2-}$. [5 marks]

(i) bottom right, (ii) top right, (iii) top left, (iv) bottom left.

[TOTAL: 50 marks]