HEDGE FUNDS,
 LONG TERM CAPITAL MANAGEMENT, and VALUE AT RISK (VAR) METHODOLOGY

I. HEDGE FUNDS - are unregulated mutual funds.

\sim There are 3,000-5,000 such funds world wide.

- $\$ 250$ to $\$ 400$ billion dollars in assets under management.
~First hedge fund formed in 1949 by Alfred Winslow Jones.
\sim Biggest fund is the Tiger Fund run by Julian Robertson.
- bad reputation: seen as a highly leveraged speculator
- activities that can put financial market in turmoil
- e.g. when $\$$ U.S. fell vs Yen, Tiger was accused of worsening the fall as it pulled out of the dollar.
~Usually structured as limited partnerships to remain unregulated.
\sim Fees are usually very high: normally 20% of profits.
\sim Self-defined as "arbitrageurs" rather than speculators.
- look for mispriced assets: buy "cheap" assets and selling off "expensive" assets
- Some trading is pure arbitrage
- Most trading involves risk. Many hedge funds have lost a large part of their capital base
\sim Hedge funds blamed for many big market swings

II. LONG TERM CAPITAL MANAGEMENT

Strategy - the fund would leverage its capital to take advantage of pricing "anomalies" in global markets.

- LTCM would be "market neutral" : uncorrelated to stock, bond, or currency markets.
~ Assured investors they would use a ratio of investment capital to assets of only 20 to 1 .
\sim Restrictions: no withdraws for 3 years, $\$ 10$ million minimum.
\sim Fees: management charge of 2% vs 1% for other funds, profit charge of 25% vs 20% for other funds

History

\sim February 1994: trading activity begins for LTCM

- found ample disparities between price and value of bonds
- return was 19.9% after fees
~ Example of 1994 trade:
- $29^{1 / 2}$-year U.S. Gov. bond seems too cheap relative to $30-$ year bond, and the price is expected to converge:

- LTCM bought $\$ 2$ billion of the $29^{1 / 2}$ year bonds and sold short $\$ 2$ billion of the 30 year bonds
- six months after transaction, $\$ 25$ million in profit made on $\$ 12$ million in capital
~ 1995 : return of 42.8% vs 16% other funds.
~ 1996 : return of 40.8% vs 17% other funds.
\sim Big gains prompted more competition - profit margins squeezed
- LTCM began investing beyond core strategy
- higher leverage and riskier bets
~ Engaged in stock-takeover arbitrage.
- strategy is to buy stocks slated for takeover and sell positions in the acquiring company
- risky business: fund lost $\$ 100$ million on proposed takeover of (former) MCI Communications Corp.
- LTCM became the biggest player in markets for some highly illiquid securities
~ 1997: momentum begins to fall and losses begin.
- fund returns 17.1% after fees
- debates ensue over core strategy
- Bad bet on German interest rates.
~ June 1998: first sign of trouble
- losses in bond markets worldwide
- 10.1\% loss in June
~August 1998: "The big shock": Russia defaults on part of its debt and lets the rouble fall
- LTCM has big investment in Russian debt
- domino effect begins
\sim August $21^{\text {st }}$: Huge losses
- Dow Jones Industrial Average down 283 points
- Euro bond market in shambles
- markets become illiquid: difficult to manoeuvre successfully out of large trading bets
- by 11 am lost $\$ 150$ million betting on two telecommunication stocks involved in takeover bid
- soon after, lost $\$ 100$ million on U.S. bond market bet
- by day's end, half a billion dollars lost
- equity down a third to $\$ 3.1$ billion

September $17^{\text {th }}:$ meeting with Goldman Sachs - partnership talks.

- Deal: in exchange for $\$ 2$ billion in capital, LTCM agreed to some supervision. However, Goldman Sachs could not get investors to buy into the deal
- LTCM portfolio fell to $\$ 1.5$ billion
~ Goldman approached Buffet and the Federal Reserve
- rescue package could not be put together quick enough
- LTCM faced continued margin calls
- fear was that fund default would force securities to close out fund's positions at fire-sale prices
- wave of selling would cause heavy losses on trading desks that had placed similar bets
\sim Fed organised a rescue plan with 14 Wall Street Banks
- a $\$ 3.625$ billion bailout was funded by the banks
- debate ensued over whether saving the fund was necessary
\sim By the end:
- LTCM lost more than 90% of its assets
- partner stakes fell from $\$ 1.6$ billion originally to only $\$ 30$ million
\sim LTCM is a unique case:
- few funds are as largely leveraged as LTCM
- almost a third of hedge funds do not borrow
- 54% of hedge funds borrow no more than the amount of equity in the portfolio
- rare to see leverage greater than 10 to 1 .

III. RISK MANAGEMENT; VALUE AT RISK (VAR) MODEL

\sim Recent years have seen many financial crisis:

- the 1987 stock market crash
- break-up of Europe's exchange rate mechanism
- bond market crash in February 1994
- Mexican peso crisis of 1995
\sim VAR used to measure risk in actively traded portfolios
- VAR is favoured by banks, and used extensively by LTCM

Definition: VAR is the maximum amount of money a portfolio many lose over a specified period with a specified probability.
\sim Daily VAR can be computed, but for less actively traded portfolios, monthly VAR is used.
\sim eg: a portfolio with a one-month 95% VAR of $\$ 4$ million

- expect to lose less than $\$ 4$ million with 95% probability.
- based on current portfolio composition and recent market behaviour

~ Another more specific example:
- assume you hold $\$ 100$ million is medium-term notes
- how much could you lose in a month?
- want to know whether returns received is appropriate compensation for risk
- must first analyse the $\%$ returns of medium term notes

- here we obtain monthly returns of medium term bonds from 1953-1995
- returns range from a low of -6.5% to a high of 12%
- construct intervals of the possible returns from lowest to highest
- count how many observations fall into each interval
- for example, there is one observation at -5%, another between -5% and $-4.5 \%, \ldots$ etc
~Result: a "probability distribution" for the monthly returns

\sim For each return can compute a probability of observing a lower return.
\sim Pick a confidence level of 95%
- at 95%, can find on the graph a point such that there is a 5% probability of finding a lower return
- in this example the number is -1.7%
- all occurrences of returns less than -1.7% add up to 5% of the total number of months (26 out of 516)
- result could also be obtained from the sample standard deviation if returns are approximately normally distributed

Now can compute VAR of $\$ 100$ million portfolio:

- only a 5% chance that the portfolio will fall by more than
1.7 million ($\$ 100$ million $x(-1.7)$)
- therefore VAR is $\$ 1.7$ million
\sim Note: choice of horizon is arbitrary at one month.
~ Horizon:
- ideally, holding period should correspond to the largest period needed for an orderly portfolio liquidation
- for a trading portfolio invested in highly liquid currencies, one-day horizon may be acceptable
- for an investment manager with monthly rebalancing, 30-day period may be appropriate
\sim Confidence level:
- should reflect degree of risk aversion of the company and the cost of a loss of exceeding VAR
- higher risk aversion, or greater costs, implies a greater amount of capital should cover possible losses - the result is a higher confidence level

Summary:

- VAR number summarises the portfolios exposure to market risk as well as the probability of an adverse move - VAR uses historic data to predict future risk and is not reliable if the model generating returns has or will change.

