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Abstract

A reformulation of the simple model of the thermally and wind-driven ocean cir-

culation introduced by Maas (1994) is considered. Under a realistic range of forcing

parameters, this model displays multiple attractors, corresponding to thermally direct

and indirect circulations. The fixed point associated with the thermally direct circu-

lation is unstable for a broad range of parameters, leading to limit cycles and chaotic

behaviour. It is demonstrated that if weather variability is parameterised as stochas-

tic perturbations to the mechanical and buoyancy fluxes, then the leading Lyapunov

exponent of the circulation can become positive for sufficiently strong fluctuations in

parameter ranges where it is deterministically zero. If the fluctuations are sufficiently

small that the stochastic trajectories are not too far from the deterministic attractor, it

is demonstrated that the sign of the leading Lyapunov exponent can have a substantial

effect on the predictability of the system.
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1 Introduction

The climate system displays variability on spatial and temporal scales over many orders of

magnitude, such that this variability is generally coupled across scales. In any tractable

model of the climate system, there will be a broad range of spatial and temporal scales that

cannot be represented explicitly, but have a nontrivial aggregate effect on the dynamics of the

resolved scales. The representation of the net effect of unresolved processes on the resolved

variables is the problem of subgrid-scale parameterisation. The separation between resolved

and unresolved scales of variability is not unique, and depends on the class of models under

consideration. In this study, the terms “weather” and “climate” will be used for variables

representing processes on the unresolved and on the resolved scales, respectively.

The traditional approach to the parameterisation problem is to model the aggregate ef-

fect of the weather variables on the dynamics of the climate variables as a deterministic

function of the climate state, assuming that each configuration of the resolved variables is

associated with a unique net effect from the unresolved scales. A degenerate deterministic

parameterisation, in which certain processes are ignored altogether, is also commonly used.

A second approach, first suggested by Hasselmann (1976), represents the rapidly fluctuating

and chaotic weather variables by stochastic processes. Although this parameterisation ap-

pears ad hoc, it can in fact be rigorously justified if the temporal autocorrelation function

of the weather variable decays sufficiently rapidly, and if the timescale separation between

weather and climate variables is sufficiently large (Penland, 2001). Although such infinite

timescale separations do not occur in the climate system, the stochastic parameterisation of

weather variability has demonstrated its utility in problems ranging from sea surface tem-

perature spectra (e.g. Hasselmann, 1976) to El Niño/Southern Oscillation dynamics (e.g.

Penland, 2000), to decadal-scale variability of the thermohaline circulation (e.g. Griffies and

Tziperman, 1995).

A basic issue in climate dynamics is the predictability of future climate states. A quan-

titative measure of predictability is the leading Lyapunov exponent, λ, which is an intrinsic

property of the climate dynamical system (Ott, 1993; Kloeden and Platen, 1992). If this
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quantity is positive, the distance between two initially close climate states increases expo-

nentially as a function of time until it is of the same size as the climate attractor; by this

point, all predictability has been lost. If λ is negative, the trajectories starting from two

initially close states asymptotically converge exponentially, although finite-time divergence

is possible (Farrell and Ioannou, 1996a).

The presence of weather fluctuations can have two distinct effects on the predictabil-

ity of the climate state. The first is straightforward: if weather fluctuations displace the

trajectory of the climate state substantially away from the deterministic attractor, then its

predictability will be limited by the inherent unpredictability of the weather state on climate

timescales. The second effect is more subtle: the presence of fluctuations can lead to a pos-

itive λ in systems for which λ < 0 in the absence of weather noise. That is, the presence of

weather noise can induce sensitivity to initial conditions in the climate state. If the strength

of the fluctuations is sufficiently small that the random trajectories of the climate system

do not stray too far from the deterministic attractor, then the sign of the leading Lyapunov

exponent will have a determining effect upon predictability. This phenomenon, which can

be described as “noise-induced chaos”, has been demonstrated in Hamiltonian systems both

numerically (e.g. Bulsara et al., 1990; Schimansky-Geier and Herzel, 1993) and analytically

(Arnold et al., 2001). Farrell and Ioannou (1996b, 1999) demonstrated that noise can change

the sign of the leading Lyapunov exponents of linear nonautonomous systems derived from

β-channel models of midlatitude atmospheric variability. Moore (1999) considered the effects

of weather noise on finite-time error growth in a fully nonlinear barotropic two-gyre ocean

model, but because of computational limitations was not able to evaluate the Lyapunov

exponents.

In this study, we will consider the effects of weather fluctuations in both the mechanical

and buoyancy forcing on the leading Lyapunov exponent of a fully nonlinear, albeit highly

simplified, model of the thermally and wind-driven ocean circulation developed by Maas

(1994). It will be shown that the presence of stochastic fluctuations can lead to an increase

or a decrease in the leading Lyapunov exponent, relative to the deterministic value. In

particular, it will be shown that there are regions of parameter space in which very small
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stochastic perturbations can change the sign of the leading Lyapunov exponent from negative

to positive, inducing sensitivity to initial conditions in the climate variables.

The original study of Maas (1994) considered the effects of rotation on the existence of

multiple circulation states; consequently, the Coriolis parameter was used as the bifurcation

parameter. In this study, the rotation rate is fixed, and the bifurcation structure as a function

of mechanical dissipation will be studied. Therefore, a somewhat different formulation of

Maas’ model is required. This reformulation is presented in Section 2. The stochastic

generalisation of this model and the associated mathematical formalism are considered in

Section 3. Section 4 presents an analysis of the deterministic system over the parameter

ranges considered. The main results of the paper, describing the noise-induced sensitivity to

initial conditions in the model and the resulting changes to predictability, are presented in

Section 5. Section 6 contains a discussion and conclusions.

2 The Maas Model of the Thermally and Wind-Driven

Ocean Circulation

The system of equations derived by Maas (1994) describe the coupled dynamics of oceanic

angular momentum and isopycnal surfaces in a rectangular ocean basin on an f-plane, driven

by thermal and mechanical forcing from the atmosphere. The basin is of length L in the zonal

and meridional directions and of depth H; the volume of the basin is denoted V = HL2. A

coordinate system is employed such that the origin is at the geometrical centre of the box.

Rescaled density and pressure are defined by:

ρ =
ρ∗ − ρ0

δρ
(1)

p =
p∗ − p0

ρ0

, (2)

where ρ∗ is the original, dimensional density, ρ0 is a constant reference density, δρ is a density

fluctuation scale (to be specified later), p∗ is the dimensional pressure, and p0 is a reference

pressure hydrostatically related to ρ0. A fundamental approximation, which is necessary to
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close the model, is that isopycnal surfaces are planar and parallel:

ρ = xρx + yρy + zρz, (3)

where

ρx =

∫
dV xρ

∫
dV x2

(4)

and similarly for ρy and ρz. The dynamics of the basin-averaged angular momentum

L =
1

V

∫
dV x× u, (5)

where x and u are respectively the coordinate and velocity fields, can be shown to be given

by

d

dt
L +

f

2
k× L = −g

′H2

12
(−ρyi + ρxj)−RL + T, (6)

where i, j, and k are respectively unit vectors in the x, y, and z directions, g ′ = gδρ/ρ0 is the

reduced gravity, and T denotes the surface angular momentum flux from wind forcing:

T =
1

V

∫ ∫
dxdy

(
−H

2
τ (y)i +

H

2
τ (x)j + (xτ (y) − yτ (x))k

)
. (7)

(Maas, 1994). The following assumptions have been used in the derivation of equation (6):

• The Boussinesq approximation

• The frictional effects of boundary layers along the rigid walls can be represented by a

diagonal Rayleigh friction tensor:

R =




rh 0 0

0 rh 0

0 0 rv



, (8)

and

• The nonhydrostatic component of the pressure torque is negligible.

The equation of motion for the density gradient vector ∇ρ = ρxi + ρyj + ρzk is:

D
d

dt
∇ρ+

1

2
∇ρ× L = −K∇ρ+ F, (9)
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where

D =




L2

12
0 0

0 L2

12
0

0 0 H2

12




(10)

is a diagonal matrix of geometrical factors and

K =




Kh 0 0

0 Kh 0

0 0 Kv




(11)

is the diffusivity tensor. The vector

F =
1

V

∫ ∫
dxdy

(
xi + yj +

H

2
k
)
Q (12)

denotes the moments of the surface buoyancy flux, Q. With specified moments of the external

mechanical and buoyancy forcing, T and F, equations (6) and (9) are a closed set of equations

for the coupled dynamics of the basin-averaged angular momentum and isopycnal surfaces.

The following assumptions are made about the forcing functions τ (x,y) and Q:

τ (y) = 0 (13)

τ (x) = u2
∗ sin

(
πy

L

)
(14)

∫
dxdy Q = 0 (15)

Q = Q(y). (16)

Assumption (15) implies that there is no net buoyancy flux into the ocean. With these

assumptions, we obtain the simplified expressions

T = − 2L

π2H
u2
∗k (17)

F =
1

LH

∫ L/2

−L/2
dy yQj. (18)

Equations (6) and (9) are nondimensionalised by rescaling the spatial variables by the cor-

responding ocean basin lengths and the time variable by a characteristic horizontal diffusion

timescale:

[x, y, z, t] =

(
L,L,H,

L2

12Kh

)
. (19)
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Defining δρe such that

[Q] =
δρeHKh

δρL2
(20)

and defining the scale of density fluctuations as

δρ =
12Khfρ0

gH
, (21)

we obtain the equations

γ
d

dt
L +

1

2
k× L = −ρyi + ρxj− ε(L1i + L2j + rL3k)− T̂k (22)

d

dt
∇ρ+

1

2
∇ρ× L = −(ρxi + ρyj + µρzk) +B2j, (23)

where

γ =
12Kh

fL2
(24)

ε =
rh
f

(25)

r =
rv
rh

(26)

T̂ =
2u2
∗L

π2fKhH
(27)

µ =
KvL

2

KhH2
(28)

B2 =
δρe
δρ
. (29)

Equations (22) and (23) differ from equations (11a) and (11b) of Maas (1994). The original

study by Maas was interested in the effect of rotation on the existence of multiple equilibria

of circulation, and the equations of motion were nondimensionalised through dividing by the

dissipation timescale rh. This study is concerned with the effect of varying the dissipation

strength at fixed rotation rate, so nondimensionalisation of the equations of motion has been

accomplished by dividing through by f .

Adopting similar parameter values to those used in Maas (1994): L = 5 × 106 m, H =

5 × 103 m, g = 10ms−2, f = 10−4s−1, Kh = 102 m2s−1, Kv = 10−4 m2s−1, u∗ = 10−2ms−1,

rh = rv = 10−7s−1, δρe/δρ = 1 × 10−3, we obtain typical parameter values: γ = 5 × 10−7,

ε = 10−3, r = 1, µ = 1, B2 = 375, and T̂ = 2. The nondimensional timescale is L2/12Kh =

660 years.
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The parameter γ, the ratio between the rotation and the horizontal diffusion timescales, is

very small. To simplify equations (22), (23), the inertia of the angular momentum is ignored

through the approximation γ = 0. This allows an explicit solution for the components of

the density gradient in terms of the components of the angular momentum:

L1 =
1/2ρx − ερy
ε2 + 1/4

(30)

L2 =
1/2ρy + ερx
ε2 + 1/4

(31)

L3 = − T̂
rε
. (32)

Substituting (30) and (31) into (23), and rescaling ∇ρ and B2 by (2ε2 + 1/2)−1, we obtain

the following system of equations for the components of ∇ρ only:

d

dt
ρx = −(1− ερz)ρx −

1

2
(L3 − ρz)ρy (33)

d

dt
ρy =

1

2
(L3 − ρz)ρx − (1− ερz)ρy +B2 (34)

d

dt
ρz = −µρz − ε(ρ2

x + ρ2
y). (35)

The equations for the horizontal components of ∇ρ have the form of a damped, driven oscil-

lator whose oscillation frequency and damping depend on ρz. The dynamics of ρz resembles

that of a driven overdamped spring.

At this point, we will note some of the physical constraints placed on the model by the

various approximations that have gone into its derivation. First, meridional structure in the

planetary vorticity is neglected: this model describes dynamics only on an f -plane. This

has the effect of excluding Rossby waves from the “internal dynamics” of the model ocean.

Second and third are the approximations that isopycnal surfaces are parallel planes and the

neglect of non-hydrostatic pressure torques. These approximations ensure that isopycnal and

isobaric surfaces coincide, and thus the geostrophic flow away from boundaries is barotropic.

Consequently, much of the flow must be concentrated in narrow boundary layers near the

walls. Relaxing these first three approximations greatly increases the dimensionality of the

model (van der Schrier, 2000). Fourth, no coupling between the ocean and atmosphere is

allowed in the model; the atmosphere appears only through surface boundary conditions
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that are independent of the state of the ocean. The extent to which there exists a two-way

coupling between the atmosphere and the ocean in middle latitudes remains a subject of

debate (e.g. Timmermann et al., 1998 and Delworth and Greatbatch, 2000). Fifth, the

model considers only a single component fluid: the individual contributions of salinity and

temperature to the density field are not considered. This constraint has been addressed in

a generalisation of the model presented in van der Schrier and Maas (1998); the original

Maas (1994) model is considered in this study to keep the system of equations, and the

space of parameters, as simple as possible. Despite the potential limitations outlined above,

the model remains attractive because it follows from the full equations of motion via an

explicit set of approximations. This is to be contrasted with, e.g., box models of the ocean

circulation. While box are instructive, their derivation is generally heuristic. We will then

approach the Maas model as an “ocean-like” system, conscious of the constraints described

above.

3 Fluctuating External Forcing

So far, the mechanical forcing T̂ (equivalently, L3) and the buoyancy forcing B2 have been

treated as fixed constants. A parameterisation of weather fluctuations in the mechanical and

thermal forcing is introduced through the addition of stochastic components to L3 and B2:

L3 → L3 + σ1Ẇ1(t) (36)

B2 → B2 + σ2Ẇ2(t). (37)

where Ẇj(t) (j = 1, 2) are Gaussian white noise process:

< Ẇj(t) > = 0 (38)

< Ẇi(t)Ẇj(t
′) > = δ(t− t′)δij. (39)

The angle brackets < · > denote the expectation operator. For simplicity, we have assumed

that the fluctuations in buoyancy forcing and mechanical forcing are independent. Of course,

because the surface winds play a central role in both momentum and buoyancy fluxes, there
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is presumably some covariability between these fluctuations. However, as buoyancy fluxes

are affected by a broad range of physical processes not directly connected to surface winds

(e.g. cloudiness, precipitation rates), we will make the approximation that the two processes

can be treated as independent.

With the introduction of white noise fluctuations in L3 and B2, equations (33)-(35)

become a stochastic differential equation (SDE) in <3, which is expressed in differential

form as

dρx =
[
−(1− ερz)ρx −

1

2
(L3 − ρz)ρy

]
dt− 1

2
σ1ρy ◦ dW1(t) (40)

dρy =
[
1

2
(L3 − ρz)ρx − (1− ερz)ρy +B2

]
dt+

1

2
σ1ρx ◦ dW1(t) + σ2dW2 (41)

dρz =
[
−µρz − ε(ρ2

x + ρ2
y)
]
dt. (42)

An introduction to the theory of SDEs is presented in Gardiner (1997). A noise term in

an SDE is said to be additive if it does not depend on the state vector; otherwise, it is

said to be multiplicative. Fluctuations in buoyancy forcing enter the SDE as additive noise,

while fluctuations in mechanical forcing enter multiplicatively. While the interpretation

of stochastic differentials associated with additive noise is unambiguous, care is required

with the interpretation of multiplicative fluctuations. The open circle ◦ indicates that the

stochastic differentials associated with fluctuating mechanical forcing are interpreted in the

Stratonovich sense. Physically, this reflects the fact that the fluctuations in L3 have a

finite, although very short, autocorrelation time, and the white noise representation is an

idealisation. Mathematically, Stratonovich differentials are attractive because the associated

chain rule is that of classical calculus. Another form of the stochastic differential, due to Ito,

yields SDEs that are more appropriate for numerical discretisation. A simple transformation

rule connects the two interpretations; a process Yt in <d solving the Stratonovich SDE:

dYt = a(t,Yt)dt+ b(t,Yt) ◦ dW(t) (43)

is also a solution of the Ito SDE

dYt = a(I)(t,Yt)dt+ b(t,Yt)dW(t), (44)
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where

a
(I)
i = ai +

1

2

∑

j,k

bkj∂kbij. (45)

and W(t) is an <p vector Wiener process with independent components. The <d vector

functions a and a(I) are referred to respectively as the Stratonovich and Ito drifts, and the

d×p matrix function b is known as the diffusion. From (45), it is clear that in the special case

that b does not depend on the state variable Yt (additive noise), the Ito and Stratonovich

SDEs coincide. We shall have need in the following discussion to work with both Ito and

Stratonovich SDEs. A detailed discussion of the differences between Stratonovich and Ito

SDEs is provided in Penland (2001) and in Gardiner (1997).

It is interesting to note that multiplicative stochasticity enters the density dynamics

naturally via fluctuations in the strength of the gyre circulation. Random fluctuations in

the gyre circulation were introduced heuristically in Monahan et al. (2001) and in Monahan

(2001) to justify the presence of a multiplicative noise term in a simple box model of the

thermohaline circulation; in the Maas model such terms follow naturally from the equations

of motion.

Equations (40)-(42) are too complicated to admit an analytic solution for general param-

eter values. In consequence, we must take recourse to numerical approximations to analyse

this system. The most straightforward numerical approximation of (40)-(42) is a forward-

Euler discretisation (Kloeden and Platen, 1992). Discretising time with timestep δ, such

that tk = kδ, the forward-Euler approximation to the Ito SDE yields the recursion relation:

Ytk+1
= Ytk + a(I)(tk,Ytk)δ + b(tk,Ytk)

√
δξk, (46)

where the ξk are independent, mean-zero, unit-variance, Gaussian random vectors in <p with

independent components. The square root of the timestep appears in the stochastic term

on the right-hand side of (46) because the variance of an increment of a Wiener process

increases linearly with time:

< (Wtk+1
−Wtk)

2 >= δ, (47)

so the increment itself scales as the square root of the timestep.
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To obtain the discretised form of equations (40)-(42), they must first be transformed into

Ito form using the transformation rule (45). Here, b is the matrix:

b(∇ρ) =




−1
2
σ1ρy 0

1
2
σ1ρx σ2

0 0




(48)

so

1

2

∑

j,k

bkj∂kbij = −σ
2
1

8
(ρx, ρy, 0)i. (49)

The Ito form of equations (40)-(42) is

dρx =

[
−
(

1− ερz +
σ2

1

8

)
ρx −

1

2
(L3 − ρz)ρy

]
dt− 1

2
σ1ρydW1(t) (50)

dρy =

[
1

2
(L3 − ρz)ρx −

(
1− ερz +

σ2
1

8

)
ρy +B2

]
dt+

1

2
σ1ρxdW1(t) + σ2dW2 (51)

dρz =
[
−µρz − ε(ρ2

x + ρ2
y)
]
dt, (52)

which is the form appropriate for discretisation and numerical approximation.

A quantity of central interest in the study of both deterministic and stochastic dynamical

systems is the leading Lyapunov exponent, which determines the sensitivity of solutions to

small perturbations in the initial conditions. If the leading Lyapunov exponent of an SDE is

negative, trajectories with slightly different initial conditions but driven by the same noise

realisation will asymptotically converge to the same random trajectory at an exponential

rate (although the error may grow for a finite time; Farrell and Ioannou, 1996a). Conversely,

if the leading Lyapunov exponent is positive, initial differences between two trajectories

will amplify until the average difference is comparable to the size of the attractor. The

theory of Lyapunov exponents for SDEs is reviewed in Appendix A; deterministic Lyapunov

exponents are obtained in the limit that the strength of fluctuations vanishes. Briefly, for a

given realisation ∇ρ(t) of (40)-(42), the leading Lyapunov exponent of the system is given

by

λ = lim
t→∞

1

t

∫ t

0
q(S(u))du, (53)

where

q(S) = q0(S) +
1

2
ST [B(∇ρ) +B(∇ρ)T ]B(∇ρ)S− (q1(S))2, (54)
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in which

q0(S(t)) = S(t)TA(∇ρ(t))S(t) (55)

q1(S(t)) = S(t)TB(∇ρ(t))S(t). (56)

In the above, A and B are the drift and diffusion operators obtained from (40)-(42) linearised

around the trajectory ∇ρ(t):

A(∇ρ(t)) =




−(1− ερz(t)) −1
2
(L3 − ρz(t))

(
1
2
ρy(t) + ερx(t)

)

1
2
(L3 − ρz(t)) −(1− ερz(t))

(
−1

2
ρx(t) + ερy(t)

)

−2ερx(t) −2ερy(t) −µ




(57)

B(∇ρ(t)) =




0 −1
2
σ1 0

1
2
σ1 0 0

0 0 0



. (58)

As is described in Appendix A, the process S(t) is the projection onto the unit sphere in

<d of the process satisfying the SDE (40)-(42) linearised around the realisation ∇ρ(t); S(t)

satisfies the SDE

dS = (A(∇ρ)− q0(S)I)Sdt+ (B(∇ρ)− q1(S)I)S ◦ dW1, (59)

in which the Wiener process W1(t) is the same as that used to generate the realisation ∇ρ(t),

and I is the identity matrix in <d. Note that the equation for S(t) does not explicitly involve

the additive noise process W1(t), which vanishes in the linearisation. This process is present

implicitly in (59) through the realisation ∇ρ(t) around which the dynamics are linearised.

From the Multiplicative Ergodic Theorem of Oseledec (Arnold, 1998), the limit (53) is unique

and non-random; that is, it is independent of the particular realisation of ∇ρ(t). Note that

because B(∇ρ(t)) is an antisymmetric matrix, q(S(t)) = q0(S(t)).

To estimate numerically the Lyapunov exponents of the system, the following procedure

is followed:

1. The Stratonovich SDEs (40)-(42) are transformed into the equivalent Ito form (50)-(52)

2. These Ito equations are discretised using (46)
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3. A time T = Nδ is defined to replace ∞ in the limit (53):

λ =
1

T

∫ T

0
q(S(t))dt (60)

4. A realisation of {ξk}Nk=1 is generated

5. This realisation of ξ is used to integrate the discretised forms of the SDE for ∇ρ(t)

6. The realisation of ξ from Step 4 and the realisation of ∇ρ from Step 5 are used to

integrate the discretised version of the Ito form of (59)

7. The limit (53) is evaluated

The integration time T is taken to be sufficiently large that differences between values of λ

obtained using different realisations of ξ are small.

In this study, we will consider the dynamics of the stochastic system (40)-(42) (equiva-

lently, (50)-(52)) for a range of values of ε and σ1, with fixed “realistic” values of L3 = −50

and B2 = 500. Note that holding L3 constant as ε varies implies that T̂ is taken to scale as

ε.

4 Deterministic Analysis

Figure 1 displays plots of the stationary solutions (ρ∗x, ρ
∗
y, ρ
∗
z) of the deterministic system (33)-

(35) as functions of ε; Figure 2 displays the corresponding values of the angular momentum

components L1 and L2. The fixed points ∇ρ∗ are given by the equations

ρ∗x =
−1

2
(L3 − ρ∗z)B2

(1− ερ∗z)2 + 1
4
(L3 − ρ∗z)2

(61)

ρ∗y =
(1− ερ∗z)B2

(1− ερ∗z)2 + 1
4
(L3 − ρ∗z)2

, (62)

where ρ∗z is a solution of the cubic equation

[
(1− ερ∗z)2 +

1

4
(L3 − ρ∗z)2

]
ρ∗z = −εB

2
2

µ
. (63)

Clearly, ρ∗z is always negative: all fixed points correspond to a stable stratification. As well,

ρ∗y always takes the same sign as B2. The fixed points of the system are characterised by three
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branches, which meet in saddle-node bifurcations at log10 ε ' −3.70 and log10 ε ' −1.73.

For ε between these values, the system displays three fixed points. The upper branch, which

survives for very small values of ε, is characterised by small density gradients. It describes

weakly stratified flow with a weak thermally indirect meridional circulation in which water

rises at the poleward end of the basin and sinks at the equatorward end. On most of this

branch, the basic density gradient tendency balances (23) can be simplified to:

ρ∗yL3 ' −2ρ∗x (64)

−ρ∗xL3 ' 2B2 (65)

ρ∗xL2 ' ρ∗yL1. (66)

From (65), we see that ρ∗x is adjusted so that the tendency of ρy due to external buoyancy

forcing is balanced by advection by the gyre circulation; as B2 > 0 and L3 < 0, ρ∗x is positive.

The y-gradient ρ∗y adjusts to balance diffusion and gyre advection in the tendency equation

(64) for ρx. The overturning circulations described by L1 and L2, determined primarily by

the balance between buoyancy torque and Coriolis torque (equations (30),(31)), are both

positive and of magnitudes such that the associated advection terms in the ρz tendency

equation are essentially in balance. The fixed points on this branch are always stable.

The middle branch describes a more strongly stratified ocean with a vigorous thermally-

indirect circulation; fixed points on this branch are always unstable. The lower branch is

characterised by strong density gradients and a thermally-direct overturning cell; the associ-

ated fixed points may be stable or unstable. On this branch, the interplay between forcing,

advection, dissipation, and diffusion is more complicated than on the upper branch. This

branch of solutions corresponds most closely to the present thermally-direct thermohaline

circulation and will be the focus of the rest of this study.

The structure of the attractor around the thermally-direct branch for varying ε can be

characterised by its intersection with the Poincaré section ρy = ρ∗y. Figure 3 displays the

values of ρx at which the trajectory crosses this surface, as a function of ε. The associated

Poincaré map is defined as the map between the values of ρx at successive crossings of the

Poincaré surface; the period of such a map is the number of iterations required for a point
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to be mapped onto itself. The bifurcation structure on the thermally-direct branch displays

the familiar period-doubling route to chaos for decreasing ε (Ott, 1993). For log10 ε > −1.54,

the fixed point ρ∗x is stable and the attractor is a fixed point with a period-1 Poincaré map.

At log10 ε ' −1.54 there is a Hopf bifurcation; the attractor is a period-2 limit cycle whose

amplitude grows as ε decreases. At log10 ε ' −1.98 the limit cycle bifurcates to a period-4

limit cycle, and at log10 ε ' −2.25 to a period-8 limit cycle. As ε is decreased still further,

the attractor goes through a series of increasingly close period-doubling bifurcations until it

is fully chaotic. From this point on, there are alternating windows in ε in which the attractor

is a limit cycle or chaotic until there is a final reverse Hopf bifurcation to a stable fixed point,

occurring just before the saddle-node bifurcation at log10 ε ' −3.68. Figure 4 displays the

structure of the attractors at log10 ε = −1.8,−2.2,−2.3,−2.4, clearly illustrating the period-

doubling transition to chaos. The locations of chaotic and non-chaotic attractors can be

further quantified through consideration of the leading Lyapunov exponents of the system,

displayed as a function of ε in the upper panel of Figure 3. These Lyapunov exponents were

estimated using the procedure outlined in Section 3 (with σ1 = σ2 = 0). The variation of

the Lyapunov exponents with ε reflects the bifurcation structure displayed in Figure 3. The

leading Lyapunov exponents are negative where the attractor is a fixed point or a limit cycle,

and positive where the attractor is chaotic. Figure 5 displays a blow-up of Figure 3 in the

region of the transition to chaos.

The deterministic Maas model displays a rich structure over a “realistic” range of the me-

chanical friction parameter, ε. For certain parameter ranges, the thermally-direct attractors

are fixed points or limit cycles with negative leading Lyapunov exponents and predictable

trajectories. In other parameter ranges, the attractor around the branch of solutions cor-

responding to thermally-direct circulation is chaotic, with positive leading Lyapunov expo-

nents, and trajectories are predictable for only a finite time. In the next section, the effect

of stochastic weather fluctuations in the mechanical and buoyancy forcing on the sign of the

Lyapunov exponents and the predictability of the system will be considered.
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5 Lyapunov Exponents and Predictability of the Stochas-

tic System

In the previous section, we considered the dynamics of the climate state described by the

Maas model in the absence of weather variability; we now consider the effects of nonzero

fluctuations in the mechanical and buoyancy forcing. Because the fluctuations in L3 and B2

are Gaussian, over very long times the system will make an arbitrarily large number of tran-

sitions between the thermally direct and indirect branches, and the stationary distribution

will have mass in both regions. However, as is discussed in Monahan (2001), the station-

ary distribution is only relevant to the description of a system with multiple regimes if the

average exit time of each regime is smaller than the longest physically-relevant timescale.

For longer average exit times, the vast majority of realisations will remain within the basin

of attraction in which they started, and it is the dynamics confined to this regime which

are of physical relevance. In this study, we are concerned not with transitions between the

thermally direct and indirect circulation branches, but with the effect of weather fluctuations

on the dynamics along the thermally direct branch. In fact, the noise strengths considered

in this study are sufficiently small that the average first exit time from the thermally-direct

branch is substantially larger than the timescales under consideration. The definition of

the leading Lyapunov exponent λ is based on the t → ∞ limit of the average (53), and

consequently involves dynamics around both the thermally direct and indirect branches. To

characterise the local leading Lyapunov exponent on the thermally direct branch, the infinite

limit is replaced by a large, but finite, time T̃ . This time is large enough for the system

to fully sample the local attractor, but much smaller than the average escape time of the

thermally-direct regime. The infinite limit in (53) has already been replaced by a finite limit

T for numerical reasons in Section 3; to evaluate numerically the leading Lyapunov exponent

of the thermally-direct branch, we take the times T and T̃ to be the same. In the calculations

presented here, we have taken T = 2500, with a timestep δ = 5× 10−4.

We first consider the effects of fluctuations in the mechanical forcing. Figure 6 displays

sample trajectories on the thermally-direct branch for
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log10 ε = −1.8,−2.2,−2.3,−2.4, perturbed by weak noise σ1 = 0.1, σ2 = 0. Because the

fluctuations in mechanical forcing are weak, the stochastic trajectories lie close to the de-

terministic attractors displayed in Figure 4. For larger values of σ1, individual stochastic

trajectories display more substantial deviations from the deterministic trajectories, although

they remain quite structured. This is illustrated in Figure 7 for the noise levels σ1 = 1, σ2 = 0.

Estimates of the leading Lyapunov exponents on the thermally-direct branch of the

stochastic Maas model over a range of noise strengths σ1 with σ2 = 0 and log10 ε =

−2.0,−2.1,−2.2 are displayed in Figure 8. For each pair of parameter values (σ1, ε), the

values of λ were calculated for 10 realisations of the white noise. The open circles plotted in

Figure 8 are the means of λ from these ensembles, while the errorbars denote the ±1 standard

deviation range. The variation of λ with σ1 is similar for each of the values of ε considered.

The leading Lyapunov exponents of the deterministic system (σ1 = 0) are negative. As σ1

increases from zero, λ initially decreases: the presence of very weak noise has a stabilising

influence upon the system. As σ1 is increased further, λ eventually begins to increase, and

for sufficiently large weather fluctuations changes sign. The noise level at which the leading

Lyapunov exponent switches from negative to positive decreases for decreasing ε. Figure 9

displays λ as a function of σ1 for log10 ε = −2.3, over the region in which it changes sign. For

this value of the mechanical damping, even very weak fluctuations in the mechanical forcing

can change the sign of the leading Lyapunov exponent, and induce sensitivity of the climate

system to initial conditions.

We now consider the effects of fluctuations in buoyancy forcing on λ. Figure 10 displays

the dependence of λ on σ2 for σ1 = 0 and log10 ε = −2.1,−2.2. As was the case with varying

σ1, λ first decreases with σ2 from the deterministic value, reaches a minimum value, then

begins to increase, eventually becoming positive. Figure 11 displays λ as a function of σ2 for

σ1 = 0 and log10 ε = −2.3. As was the case with fluctuations in the mechanical forcing, even

weak weather variability in the buoyancy forcing can render the leading Lyapunov exponent

positive for log10 ε = −2.3.

For the parameter values considered, it appears that, generically, the effect of fluctuations

in both buoyancy forcing and mechanical forcing on the leading Lyapunov exponent of the
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thermally-direct branch of the Maas model is first to decrease λ relative to the deterministic

value, and then to increase λ as the fluctuations become stronger. Eventually, the presence of

fluctuations changes the sign of λ from negative to positive, and the climate state is rendered

sensitive to initial conditions.

As discussed in Section 1, the presence of stochastic fluctuations in the system will have

an impact on predictability irrespective of the sign of the leading Lyapunov exponent. By

definition, the weather noise is unpredictable. If the fluctuations are sufficiently strong

that the stochastic trajectories deviate substantially from the deterministic ones, then these

fluctuations themselves will limit predictability. If, however, individual realisations of ∇ρ(t)

evolve close to the deterministic attractor, then the sign of the Lyapunov exponents may

play a key role in determining predictability. To demonstrate this, the following experiment

was carried out.

Figures 8 and 9 show that λ is negative for log10 ε = −2.2 and positive for log10 ε = −2.3

for noise levels σ1 = .07, σ2 = 0. One hundred realisations of ∇ρ(t) with random, but nearby,

initial conditions and different realisations of the weather noise process Ẇ1 were computed

at this noise level for both of these friction values. Each one of these realisations can be

considered the “true” trajectory of the climate state, and each of the 99 remaining a “predic-

tion”. For each of the 4950 resulting pairs of “true” and “forecast” trajectories, a time series

of correlation coefficients within a sliding window of width ∆t = 0.5 between the “true” and

“forecast” ρx(t) time series was generated. This window is wide enough to resolve several

complete circuits of the limit cycle. The resulting time series of correlations characterises the

evolution of local phase differences between the “true” and “forecast” trajectories. Figures

12(a) and (c) display the evolution in time of the estimated probability density function

(PDF) of the windowed correlation coefficient for log10 ε = −2.2 and log10 ε = −2.3, respec-

tively. For both values of ε, the distribution is initially concentrated near 1: the different

trajectories are all initially very similar. As time increases, both PDFs broaden, indicating

increasingly likely dephasing between “true” and “forecast” trajectories. For log10 ε = −2.2,

most of the mass of the PDF remains near 1 as t increases; this implies that despite the

stochastic fluctuations, there is usually only limited dephasing between trajectories and the
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climate state retains a substantial degree of predictability. However, for log10 ε = −2.3, the

PDF rapidly broadens and flattens out, indicating a general rapid dephasing and loss of

predictability. The thick line in Figures 12(a) and (c) corresponds to the average windowed

correlation coefficient; this clearly decreases much more rapidly for log10 ε = −2.3 than for

log10 ε = −2.2. The difference in evolution of the windowed correlation coefficient is a conse-

quence of the fact that for log10 ε = −2.3, the leading Lyapunov exponent is positive, while

for log10 ε = −2.2, it is negative. Clearly, in the presence of weather fluctuations sufficiently

weak that the trajectories of the climate variable do not differ too much from the determin-

istic attractor, the sign of the leading Lyapunov exponent has a substantial impact on the

predictability of the system.

The above analysis investigated the rate of decorrelation rate between individual realisa-

tions of the climate trajectory. Figures 12(b) and (d) display the distribution of the windowed

correlation coefficient between each individual realisation and the ensemble average of the

remaining 99. For both log10 ε = −2.2 and log10 ε = −2.3, the decorrelation rate is smaller

for the ensemble forecasts than it is for individual forecasts. Again, the windowed correlation

coefficient distribution for log10 ε = −2.3 broadens and flattens much more rapidly than for

log10 ε = −2.2, demonstrating the limits on predictability induced by positive λ.

This experiment was repeated with σ1 = 0.75, σ2 = 0 for the friction parameter values

log10 ε = −2.2 and log10 ε = −2.1. The results (not shown) demonstrate that the different

trajectories decorrelate at about the same rate for both values of ε. At this noise level, the

effects of the weather fluctuations on the predictability of the climate system dominate over

those associated with the sign of λ.

6 Conclusions

In this study, we have considered the dynamics of a low-order, nonlinear model of the ther-

mally and wind-driven ocean circulation proposed by Maas (1994). This model is attractive

in that it can be obtained rigorously from the primitive equations via a clear sequence of

approximations, although it is clearly too simple to provide an accurate quantitative repre-
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sentation of ocean dynamics.. The Maas model displays multiple regimes of circulation and

a rich variety of behaviour over realistic parameter ranges, including limit cycles and deter-

ministic chaos. The original formulation of the Maas model considered the evolution of the

ocean state (the climate) in the absence of fluctuations associated with weather variability;

the mechanical and buoyancy forcings were represented as fixed parameters. In the present

study, variability on scales not represented explicitly (weather fluctuations) has been pa-

rameterised as stochastic fluctuations in these forcing parameters. The primary question we

have addressed is the issue of how these fluctuations affect the predictability of the system,

as measured by the leading Lyapunov exponent. It was demonstrated numerically that the

presence of even very weak weather fluctuations can change the sign of the leading Lyapunov

exponent of the climate state from negative to positive. The climate system is then sensi-

tive to initial conditions, and is characterised by a finite predictability time. Of course, the

presence of (by definition) unpredictable stochastic fluctuations also limits the predictability

of the system. We have demonstrated that if the fluctuations are sufficiently small that in-

dividual stochastic trajectories do not deviate too far from the deterministic attractor, then

the sign of the leading Lyapunov exponent has a determining impact on predictability.

The present study suggests a number of natural extensions. First, as was discussed in

Section 2, it has been assumed that the statistics of the weather variables are independent

of the climate state, i.e., the weather drives the climate state but not vice versa. A natural

extension of this study would be an investigation of the extent to which two-way coupling

between the climate and weather variables would change the dynamical behaviour of the

model. Second, the effect of including weather variability on the more general model in-

troduced by van der Schrier and Maas (1998), in which the density field is determined by

both salinity and temperature, could be considered. A third natural extension is to relax the

assumptions (13)-(16). In particular, the effect on the dynamics of having these assumptions

hold in the time mean, but not instantaneously, could be considered. Finally, a detailed

consideration of the effects of high-frequency variability on the Lyapunov exponents of more

complex (and more climatically relevant) models would be an important extension of this

study.
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The problem of predictability is subtle (Palmer, 1995): the leading Lyapunov exponent

is a bulk quantity characterising the average growth rate of perturbations over the entire

trajectory of the climate state. Analysis of the predictability of flows starting from a partic-

ular climate state involves consideration of the associated singular value spectrum (Palmer,

1995; Farrell and Ioannou, 1996a). In many cases, this local measure of error growth may

be more relevant than the global measure associated with λ. Furthermore, the leading Lya-

punov exponent may not be directly related to predictability time in spatially extended

systems characterised by spatio-temporal chaos (e.g. Paladin and Vulpiani, 1994; Boffetta

et al., 2002). In such systems, the predictability time may be more directly related to the

time needed for an initial perturbation to propagate through the system or to align itself

along the direction of most rapid error growth, or large-scale structure in the system may

be predictable despite the presentce of unpredictable microscopic fluctuations. Whether or

not the leading Lyapunov exponent is a primary determinant of predictability for general

hydrodynamical systems is unclear, although it appears to be so in the shell model of three-

dimensional turbulence described in Paladin and Vulpiani (1994). Finally, even if the leading

Lyapunov exponent is an important measure of the predictability of oceanic circulation, the

noise effects detailed above in the context of Maas’ reduced model may not appear in the

original set of partial differential equations; this question can only be addressed through the

study of less idealised models. The goal of the present study is not to claim that fluctuations

will necessarily render the ocean circulation unpredictable; rather, it is to suggest that fluc-

tuations may alter the sign of the leading Lyapunov exponent, which may have consequences

for the predictability of the climate system.

A general feature of current generation General Circulation Models (GCMs) is that they

underestimate the observed variability of the climate system (e.g. Barsugli and Battisti,

1998). To a certain extent, this is because these models are all characterised by finite tem-

poral and spatial resolution. Variability below these scales is generally represented as a

deterministic function of the resolved variables, or ignored. Because most of this subgrid-

scale variability is associated with turbulent motion, it has an inherently random character.

It is conceivable that rather than the deterministic representation in terms of the resolved
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variables, subgrid scale processes - that is, the weather variables - are more appropriately

modelled stochastically. Stochastic subgrid-scale parameterisation in GCMs has been ad-

vocated by Palmer (2001); some preliminary results in this direction have recently been

presented by Lin and Neelin (2000). In the context of the very simple model considered in

this study, it has been shown that the neglect of weak stochastic fluctuations can affect the

sign of the leading Lyapunov exponents, with potentially pronounced implications for the

predictability of the system. It is possible that the stochastic representation of subgrid-scale

variability even in complex GCMs may have a substantial impact on their ability to represent

the observed climate system.
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Appendix A: Lyapunov Exponents of Stochastic Differ-

ential Equations

A basic account of Lyapunov exponents for SDEs is presented in Kloeden and Platen (1992).

An overview of the results is presented in this appendix.

We consider the Stratonovich SDE in <d

dX(t) = a(X(t))dt+ b(X(t)) ◦ dW(t), (67)

in which W(t) is a p-dimensional Wiener process with independent components. This equa-

tion may be written

dX(t) = a(X(t))dt+
p∑

k=1

bk(X(t)) ◦ dWk(t). (68)
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A discussion of the difference between Ito and Stratonovich SDEs, and the rules for trans-

formation between the two, is presented in Gardiner (1997). As in deterministic systems,

Lyapunov exponents characterise the stability of small perturbations, Z(t) = X(t) − X̂(t),

around a realisation X̂(t) of (68). The process Z(t) is described by the linearisation of (68)

around X̂(t):

dZ(t) = A(X̂(t))Z(t)dt+
p∑

k=1

Bk(X̂(t))Z(t) ◦ dWk(t) ; Z(0) = Z0, (69)

where the matrices A and Bk are given by

A(X̂(t))ij = ∂xjai(X̂(t)) (70)

Bk(X̂(t))ij = ∂xjb
k
i (X̂(t)). (71)

A Lyapunov exponent of the system (68) is defined as the limit:

λ(z0) = lim
t→∞

ln ||Z(t)||
t

, (72)

where || · || denotes the L2 norm. The Multiplicative Ergodic Theorem of Oseledec (Arnold,

1998) guarantees that for general z0 (that is, excluding a set of measure zero), the limit (72)

will be unique and correspond to the largest Lyapunov exponent of the system (68), denoted

λ.

As the definition of the Lyapunov exponent involves only the norm of the process Z(t),

it is convenient to consider (69) in spherical coordinates. Define

R(t) = ||Z(t)|| (73)

S(t) =
Z(t)

||Z(t)|| , (74)

so that S(t) is a process on the unit sphere in <d. Because equation (69) is a Stratonovich

SDE, the regular rules of calculus apply, so R(t) and S(t) satisfy the SDEs:

dR = q0(S)Rdt+
p∑

k=1

qk(S)R ◦ dWk (75)

dS = (A(X̂)− q0(S)I)Sdt+
p∑

k=1

(Bk(X̂)− qk(S)I)S ◦ dWk, (76)
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where

q0(S(t)) = S(t)TAS(t), (77)

qk(S(t)) = S(t)TBkS(t), (78)

and I denotes the identity matrix in <d. Equation (75) may be formally integrated to yield

lnR(t) =
∫ t

0
q0(S(u))du+

p∑

k=1

∫ t

0
qk(S(u)) ◦ dWk(u) (79)

=
∫ t

0
q(S(u))du+

p∑

k=1

∫ t

0
qk(S(u))dWk(u), (80)

where in the last equality we have transformed the Stratonovich integral into an Ito integral,

so that

q(S) = q0(S) +
p∑

k=1

(
1

2
ST [Bk(X̂) +Bk(X̂)T ]Bk(X̂)S− (qk(S))2

)
. (81)

The transformation to an Ito integral is carried out to take advantage of the fact that, with

probability one,

lim
t→∞

1

t

∫ t

0
Y (s)dW (s) = 0 (82)

for any (relevant) stochastic process Ys. Consequently, we find the following equation for the

leading Lyapunov exponent of (68):

λ = lim
t→∞

1

t
ln ||Z(t)|| (83)

= lim
t→∞

1

t
lnR(t) (84)

= lim
t→∞

1

t

∫ t

0
q(Su)du. (85)

Note that equation (76) is an SDE for S(t) alone; it does not depend on the process R(t).

Thus, the leading Lyapunov exponent of the SDE (68) may be evaluated by solving the SDE

(76) and evaluating (85).
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Figure Captions

Figure 1:Stationary solutions (ρ∗x, ρ
∗
y, ρ
∗
z) of equations (33)-(35) as functions of ε. Solid

(dashed) lines denote stable (unstable) fixed points.

Figure 2: As in Figure 1, but for the fixed points of the x- and y− components of the

angular momentum.

Figure 3: Leading Lyapunov exponent λ (upper panel) and values of ρx at which the

trajectory crosses the surface ρy = ρ∗y (lower panel) as a function of ε, on the

thermally-direct branch.

Figure 4: Deterministic attractors of thermally-direct branch for

log10 ε = (a)− 1.8, (b)− 2.2, (c)− 2.3, (d)− 2.4.

Figure 5: A blow-up of Figure 3.

Figure 6: As in Figure 4, with σ1 = 0.1, σ2 = 0.

Figure 7: As in Figure 4, with σ1 = 1, σ2 = 0.

Figure 8: Leading Lyapunov exponents of the stochastic Maas model as a function of σ1

for σ2 = 0, log10 ε = −2.0 (thin line), −2.1 (dash-dotted line), and −2.2 (thick line).

Figure 9: As in Figure 8 for σ2 = 0, log10 ε = −2.3.

Figure 10: Plot of λ as a function of σ2 for σ1 = 0 and log10 ε = −2.1 (thin line) and

log10 ε = −2.2 (thick line).

Figure 11: As in Figure 10 for σ1 = 0, log10 ε = −2.3.

Figure 12: Time evolution of the PDFs of the windowed correlation coefficient between

(a) “true” and individual “forecast” ρx trajectories and (b) “true” and ensemble mean

“forecast” trajectories for log10 ε = −2.2. (c) and (d) are as (a) and (b) for log10 ε = −2.3.

The thick lines are the ensemble means of the windowed correlation coefficients.
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Figure 1: Stationary solutions (ρ∗x, ρ
∗
y, ρ
∗
z) of equations (33)-(35) as functions of ε. Solid

(dashed) lines denote stable (unstable) fixed points.
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Figure 2: As in Figure 1, but for the fixed points of the x- and y− components of the angular

momentum.
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Figure 3: Leading Lyapunov exponent λ (upper panel) and values of ρx at which the tra-

jectory crosses the surface ρy = ρ∗y (lower panel) as a function of ε, on the thermally-direct

branch.
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Figure 4: Deterministic attractors of thermally-direct branch for log10 ε = (a) − 1.8, (b) −

2.2, (c)− 2.3, (d)− 2.4.
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Figure 5: A blow-up of Figure 3.
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Figure 6: As in Figure 4, with σ1 = 0.1, σ2 = 0.
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Figure 7: As in Figure 4, with σ1 = 1, σ2 = 0.
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Figure 8: Leading Lyapunov exponents of the stochastic Maas model as a function of σ1 for

σ2 = 0, log10 ε = −2.0 (thin line), −2.1 (dash-dotted line), and −2.2 (thick line).

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

σ
1

λ 1

Figure 9: As in Figure 8 for σ2 = 0, log10 ε = −2.3.
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Figure 10: Plot of λ as a function of σ2 for σ1 = 0 and log10 ε = −2.1 (thin line) and

log10 ε = −2.2 (thick line).
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Figure 11: As in Figure 10 for σ1 = 0, log10 ε = −2.3.
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Figure 12: Time evolution of the PDFs of the windowed correlation coefficient between (a)

“true” and individual “forecast” ρx trajectories and (b) “true” and ensemble mean “forecast”

trajectories for log10 ε = −2.2. (c) and (d) are as (a) and (b) for log10 ε = −2.3. The thick

lines are the ensemble means of the windowed correlation coefficients.
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