1st Order Ode Flowchart & Recipe Book

To solve the ODE

$$\frac{dy}{dx} = f(x, y)$$

it is useful to ask yourself the following:

1. Is the ODE separable?

Can the ODE be written

$$\frac{dy}{dx} = g(x)h(y)$$

for some functions g(x) and h(y)? If so, solution is found from:

$$\int \frac{dy}{h(y)} = \int g(x)dx + C$$

IF NOT,

2. Is the ODE linear?

Can the ODE be written

$$\frac{dy}{dx} + P(x)y = f(x)$$

for some functions P(x) and f(x)? If so, then solution is found from

$$q(x)y(x) = \int q(x)f(x) \, dx + c$$

where

$$q(x) = \exp\left(\int P(x)dx\right)$$

IF NOT,

3. Is the ODE exact?

Can the ODE be written

$$M(x,y)dx + N(x,y)dy = 0$$

for some functions M(x, y) and N(x, y) such that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If so, then have the implicit solution h(x, y) = const. where

$$h(x,y) = \int M(x,y) \, dx + g(y)$$

and the function g(y) is found from requiring that

$$\frac{\partial h}{\partial y} = N(x, y)$$

IF NOT,

4. Can we solve the ODE by substitution?

(a) Is the ODE a homogeneous equation of order α ? Can we write the ODE as

$$M(x,y)dx + N(x,y)dy = 0$$

for some functions M(x, y) and N(x, y) such that $M(tx, ty) = t^{\alpha}M(x, y)$ and $N(tx, ty) = t^{\alpha}N(x, y)$ for some constant α ? If so, then with the substitution y = ux (such that dy = udx + xdu), the ODE becomes separable in u and x. **IF NOT**

(b) Is the ODE of the Bernoulli Type? Can we write the ODE in the form

$$\frac{dy}{dx} + P(x)y = f(x)y^n$$

If so, then the substitution $u = y^{1-n}$ makes the equation linear in u. IF NOT

(c) Can we find some other substitution? The answer to this is down to (educated) guesswork.

IF NOT

5. Can we describe the qualitative solution to the ODE?

Is the ODE autonomous, that is, of the form

$$\frac{dy}{dx} = f(y)$$

If so, we can find the critical points, that is, solutions of the equation f(y) = 0. The critical points can be classified as attractors or repellers, and the basins of attraction of the attractors found. This allows the qualitative asymptotic $(x \to \infty)$ behaviour of the solutions to be characterised.

OTHERWISE

6. Can we use a numerical method?

If qualitative solutions are not sufficient, or not available, then we may simply have to recourse to obtaining numerical approximations.