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ABSTRACT

The statistical structure of sea surface wind speeds is considered, both in terms of the leading-order
moments (mean, standard deviation, and skewness) and in terms of the parameters of a best-fit Weibull
distribution. An intercomparison is made of the statistical structure of sea surface wind speed data from four
different datasets: SeaWinds scatterometer observations, a blend of Special Sensor Microwave Imager
(SSM/I) satellite observations with ECMWF analyses, and two reanalysis products [NCEP–NCAR and
40-yr ECMWF Re-Analysis (ERA-40)]. It is found that while the details of the statistical structure of sea
surface wind speeds differs between the datasets, the leading-order features of the distributions are con-
sistent. In particular, it is found in all datasets that the skewness of the wind speed is a concave upward
function of the ratio of the mean wind speed to its standard deviation, such that the skewness is positive
where the ratio is relatively small (such as over the extratropical Northern Hemisphere), the skewness is
close to zero where the ratio is intermediate (such as the Southern Ocean), and the skewness is negative
where the ratio is relatively large (such as the equatorward flank of the subtropical highs). This relationship
between moments is also found in buoy observations of sea surface winds. In addition, the seasonal
evolution of the probability distribution of sea surface wind speeds is characterized. It is found that the
statistical structure on seasonal time scales shares the relationships between moments characteristic of the
year-round data. Furthermore, the seasonal data are shown to depart from Weibull behavior in the same
fashion as the year-round data, indicating that non-Weibull structure in the year-round data does not arise
due to seasonal nonstationarity in the parameters of a strictly Weibull time series.

1. Introduction

Interactions between the ocean and atmosphere are
strongly influenced by the probability distribution of
sea surface wind speeds. Air–sea fluxes of momentum,
energy, and material substances are generally found to
have a nonlinear dependence on sea surface wind speed
(e.g., Jones and Toba 2001; Donelan et al. 2002), so
average fluxes depend not only on the average wind
speed, but also on higher-order moments of the distri-
bution. In consequence, the accurate characterization
of the probability distribution of sea surface wind
speeds is an important problem of meteorological,
oceanographic, and climatic significance (e.g., Wright
and Thompson 1983; Thompson et al. 1983; Isemer and

Hasse 1991; Wanninkhof 1992; Wanninkhof and
McGillis 1999; Wanninkhof et al. 2002). It has been
known for some time that the variability of sea surface
wind speeds can be characterized to a good approxima-
tion by the two-parameter Weibull distribution (e.g.,
Pavia and O’Brien 1986; Erickson and Taylor 1989;
Bauer 1996), although it has been stressed that this
approximation is not exact (e.g., Tuller and Brett 1984;
Erickson and Taylor 1989; Bauer 1996). A limitation of
most of these earlier studies was the lack of high-
resolution (in both space and time) records of sea sur-
face wind speeds of sufficient duration to accurately
characterize the distributions on a global scale. For ex-
ample, the study of Pavia and O’Brien (1986) employed
ship data from a single year, with poor spatial resolu-
tion outside of the extratropical Northern Hemisphere
(NH). Conversely, the study of Isemer and Hasse
(1991) made use of 30 yr of ship data but considered
only the North Atlantic Ocean.

Over the last decade, unprecedentedly long time se-
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ries of sea surface wind speeds with global coverage
have become available from two primary sources: re-
analysis products and satellite-derived remotely sensed
observations. Reanalyses combine meteorological ob-
servations with full atmospheric general circulation
models (GCMs) to find model states that are optimally
compatible with the observations; the resulting datasets
are of long duration, with high resolution in both space
and time (e.g., Kalnay et al. 1996; Simmons and Gibson
2000). The reanalysis GCM, however, is only an ap-
proximate representation of the real atmosphere. Con-
sequently, reanalysis products have the drawback that
they will be corrupted by model biases, especially in
poorly sampled regions where the reanalysis data re-
flect the model more than the observations. On the
other hand, remotely sensed sea surface wind speeds
have the benefit of being more direct measurements of
sea surface winds and are generally found to agree rea-
sonably well with in situ buoy and ship-based observa-
tions (e.g., Meissner et al. 2001; Ebuchi et al. 2002;
Bourassa et al. 2003), but they are generally of limited
duration (e.g., Kelly 2004). Buoy data represent real in
situ observations, but their spatial coverage is limited,
particularly in the open ocean. Because they are not
corrupted by GCM biases, satellite observations of sea
surface winds are preferred for applications that do not
require long time series (e.g., Chelton et al. 2004); other
applications, such as global estimates of air–sea fluxes
(Wanninkhof et al. 2002), require the long datasets that
are only available through reanalysis products. An in-
tercomparison of the characterization of the probability
distribution of sea surface wind speeds in different
datasets is therefore a useful exercise.

Part I of the present study (Monahan 2006, hereafter
Part I) characterized the statistical structure of the
probability distribution of sea surface wind speeds, w,
using 6 yr of daily vector wind data from the SeaWinds
scatterometer mounted on the Quick Scatterometer
(QuikSCAT) satellite. This characterization was in
terms of both the leading few moments (mean, stan-
dard deviation, and skewness) as well as the parameters
of the Weibull distribution. It was confirmed that the
Weibull distribution is a good approximation to the dis-
tribution of sea surface wind speeds. In particular, both
the SeaWinds observations and the Weibull distribu-
tion share the feature that the skewness of w is a con-
cave upward function of the ratio of the mean of w to its
standard deviation, such that the skewness is positive
when the ratio is small, the skewness is near to zero
when the ratio is intermediate, and the skewness is
negative when the ratio is large. Using a simple stochas-
tic model derived using a clear sequence of approxima-
tions from the boundary layer momentum equations, it

was shown that this relationship between moments is a
consequence of the non-Gaussian structure of the sea
surface vector winds resulting from the nonlinear de-
pendence of surface drag on wind speed (Monahan
2004a,b).

Despite being well-approximated by a Weibull distri-
bution, the SeaWinds observations were found to dis-
play distinct non-Weibull behavior. In particular, the
slope of the relationship between mean(w)/std(w) and
skew(w) was found to be steeper than the Weibull
curve for low values of the ratio, and shallower than the
Weibull curve for larger values. In geographical terms,
the skewness of the observed wind speeds tends to be
more negative in the Tropics, and more positive in the
extratropics, than the equivalent Weibull variable. It
was concluded, based on a Monte Carlo analysis, that
the probability was vanishingly small of this non-
Weibull structure arising because of sampling fluctua-
tions of an underlying Weibull population. Spurious
non-Weibull structure in observations of truly Weibull
winds could arise for two further reasons: 1) biases in
the data and 2) nonstationarities associated with the
seasonal evolution of sea surface winds. As Part I
of this study considered only data from the single
SeaWinds dataset throughout the entire year, neither of
these possibilities were assessed in detail.

The present study presents an intercomparison of the
statistical structure of sea surface wind speeds in re-
motely sensed, reanalysis, and buoy wind datasets. In
particular, this study considers the extent to which the
relationships between the moments of sea surface wind
speeds observed in the SeaWinds data characterize
other sea surface wind datasets. Furthermore, we will
investigate the variability of the probability distribution
of sea surface wind speeds over the course of the sea-
sonal cycle. The evolution of the moments and Weibull
parameters of sea surface winds over the seasonal cycle
will be documented, and the possibility that the non-
Weibull structure observed in the SeaWinds sea surface
wind data arises because of seasonal nonstationarities
will be addressed.

A brief review of the properties of the Weibull dis-
tribution is presented in section 2, followed by an over-
view of the datasets considered in this study in section
3. An intercomparison of the statistical structure of the
sea surface wind in the different datasets is presented in
section 4, and a characterization of the seasonal evolu-
tion of the probability distributions is given in 5. A
discussion and conclusions follow in section 6.

2. Statistical preliminaries

We will present a brief overview of the essential fea-
tures of the Weibull distribution, a more thorough re-
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view of which is presented in Part I of this study. A
random variable x characterized by a two-parameter
Weibull distribution has the probability density func-
tion (PDF)

p�x� �
b

a �x

a�b�1

exp���x

a�b�. �1�

The parameters a and b denote, respectively, the scale
and shape parameters. The averages of powers of x are
given simply by

mean�xk� � ak��1 �
k

b�, �2�

where � is the gamma function. Expressions for the
moments of x follow from Eq. (2). In particular, both
the mean and standard deviation of x [denoted, respec-
tively, mean(x) and std(x)] depend on both the a and b
parameters, although the dependence of mean(x) on b
is weak. On the other hand, the skewness and kurtosis
of x, respectively, the normalized third- and fourth-
order moments,
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depend only on the parameter b.
As is discussed in Part I, a number of different esti-

mators of the Weibull parameters exist. In practice, it is
found that differences in wind speed scale and shape
parameters obtained from these different estimators
are negligible. Therefore, we will use the simplest of
these estimators:

a �
mean�x�

��1 � 1�b�
�7�

b � �mean�x�

std�x� �1.086

. �8�

Note that the Weibull shape parameter b is uniquely
determined by the ratio of mean(x) to std(x).

3. Data

The following datasets are considered in this study.

1) Daily level 3.0 gridded SeaWinds scatterometer
10-m zonal and meridional wind observations from
the National Aeronautics and Space Administration
(NASA) QuikSCAT satellite (Jet Propulsion Labo-

ratory 2001), available on a 1/4° � 1/4° grid from 19
July 1999 to the present (15 March 2005 for the
present study). These data are available for down-
load from the NASA Jet Propulsion Laboratory
(JPL) Distributed Active Archive Center (see http://
podaac.jpl.nasa.gov). The SeaWinds data have been
extensively compared with buoy and ship measure-
ments of surface winds (Ebuchi et al. 2002; Bourassa
et al. 2003; Chelton and Freilich 2005); the root-
mean-square errors of the remotely sensed wind
speed and direction are both found to be dependent
on wind speed, with average values of �1 m s�1 and
�20° respectively. Because raindrops are effective
scatterers of microwaves in the wavelength band ob-
served by SeaWinds, rainfall can lead to errors in
estimates of sea surface winds. The SeaWinds level
3.0 dataset flags those data points that are estimated
as likely to have been corrupted by rain (Jet Pro-
pulsion Laboratory 2001); these data points have
been excluded from the present analysis.

2) Six-hourly level 3.0 Special Sensor Microwave
Imager (SSM/I) 10-m zonal and meridional wind
data, variationally blending raw SSM/I retrievals
with European Centre for Medium-Range Weather

15 FEBRUARY 2006 M O N A H A N 523



Forecasts (ECMWF) analyses and in situ observa-
tions, available on a 1° � 1° grid from 1 July 1987 to
31 December 2001. The dataset and blending algo-
rithm are described in Atlas et al. (1996) and Meiss-
ner et al. (2001). These data are available from the
NASA JPL Distributed Active Archive Center (see
http://podaac.jpl.nasa.gov).

3) Six-hourly 40-yr ECMWF Re-Analysis (ERA-40)
reanalysis 10-m zonal and meridional winds, avail-
able on a 2.5° � 2.5° grid from 1 September 1957 to
31 August 2002 (Simmons and Gibson 2000). These
data are available online (see http://data.ecmwf.int/
data/d/era40/).

4) Six-hourly National Centers for Environmental Pre-
cipitation–National Center for Atmospheric Re-
search (NCEP–NCAR) reanalysis 10-m zonal and
meridional winds, available on a 1.875° � 1.9° Gaus-
sian grid from 1 January 1948 to 31 December 2002
(Kalnay et al. 1996). These data are available from
the National Ocean and Atmospheric Administra-
tion–Cooperative Institute for Research in Environ-
mental Sciences (NOAA–CIRES) Climate Diag-
nostics Center (see http://www.cdc.noaa.gov/).

5) Daily buoy observations obtained from the National
Data Buoy Center (NDBC; data available from
http://www.ndbc.noaa.gov) and from the Tropical
Atmosphere–Ocean (TAO) and the Pilot Research
Moored Array in the Tropical Atlantic (PIRATA)
arrays (data available from the TAO Project Office,
http://www.pmel.noaa.gov/tao/data_deliv/). The se-
lected buoys (18 from NDBC, 66 from TAO, and 9
from PIRATA) each have a minimum of 730 days of
observations and are sufficiently far from land that
local coastal effects are minimal. For each buoy, sea
surface temperature and surface atmosphere tem-
perature were available, so the wind speed at the

anemometer height was converted to 10-m wind
speed using the stability-dependent method de-
scribed in Liu and Tang (1996). The locations of
these buoys are illustrated in Fig. 1.

No preprocessing, such as filtering or removing the an-
nual cycle, was carried out on any of these datasets.

4. Sea surface wind dataset intercomparison

The wind speed datasets considered in this study are
not mutually independent. The SSM/I dataset is a blend
of satellite observations, ECMWF analysis fields, and
some buoy observations. The model physics used in the
preparation of these analysis fields will share essential
features with the model physics used in the preparation
of the reanalysis products. Furthermore, TAO buoy ob-
servations were assimilated into the ERA-40 product,
and raw SSM/I surface wind speed estimates were as-
similated into both the ERA-40 and NCEP–NCAR re-
analysis. However, as noted in Meissner et al. (2001),
for the NCEP–NCAR dataset SSM/I surface winds
were estimated using an algorithm in accordance with
Krasnopolsky et al. (1995) rather than the Wentz
(1997) algorithm used for the ERA-40 and blended
SSM/I datasets. ERA-40 also assimilates surface wind
data from the European Space Agency Earth Remote
Sensing (ERS)-1 and -2 scatterometers. Therefore,
while these datasets are not independent, they are dis-
tinct and an intercomparison is meaningful.

a. Moments

The mean, standard deviation, skewness, and kurto-
sis fields of w from the SeaWinds, SSM/I, ERA-40, and
NCEP–NCAR reanalysis datasets are displayed in Fig.
2. The moment fields estimated from the four datasets

FIG. 1. Locations of buoys considered in this study (NDBC buoys: triangles; TAO buoys:
filled circles; PIRATA buoys: asterisks).
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share the same basic features. Maxima in mean(w) are
evident over the Southern Ocean and in the NH mid-
latitude storm tracks. Secondary maxima of the mean
wind speed are observed along the equatorward flanks
of the subtropical high pressure cells, and minima are
evident in the equatorial doldrums and subtropical
horse latitudes. The standard deviation of w is largest in
the midlatitude storm tracks and generally decreases
equatorward; variability is generally smallest beneath
the climatological subtropical anticyclones. A weak lo-
cal maximum in std(w) lies along the intertropical con-
vergence zone (ITCZ). The skewness of w is strongly
positive in the NH extratropics and along the equator-
ward flank of the Southern Hemisphere (SH) westerly
jet; it is close to zero over the Southern Ocean, and it is
negative in those parts of the Tropics and subtropics
characterized by strong and steady winds. The kurtosis
of w is generally negative along the ITCZ and in the
Indian Ocean, close to zero over the Southern Ocean
and in much of the Tropics, and positive elsewhere.

While the moment fields estimated from the SeaWinds,
SSM/I, ERA-40, and NCEP–NCAR datasets share the
same basic features in common, they differ in details.
Figure 3 presents maps of the SSM/I, ERA-40, and
NCEP–NCAR moment fields minus the SeaWinds mo-
ment fields. It is evident that the SeaWinds mean(w)

field is generally larger than the mean(w) fields from
the other datasets, although differences are small with
mean(w) from SSM/I. Differences from the reanalysis
datasets are particularly large in the Tropics and over
the Southern Ocean. The SeaWinds std(w) field is
slightly smaller than the SSM/I std(w) field in the Trop-
ics and is slightly larger over the Southern Ocean. The
ERA-40 std(w) is generally biased low relative to the
SeaWinds std(w). Differences in std(w) between Sea-
Winds and the NCEP–NCAR reanalysis are typically
small and spatially disorganized. The negative skew(w)
in the Tropics is considerably weaker in the SSM/I and
NCEP–NCAR datasets and slightly stronger in the
ERA-40 dataset than in the SeaWinds observations.
The ERA-40 skew(w) field is also more negative over
the Southern Ocean than the skewness fields of the
other datasets. Differences between kurt(w) fields esti-
mated from the different datasets are larger than for
the other moment fields. In general, the SeaWinds
kurt(w) field is larger than the kurt(w) fields of the
other datasets, although there are localized regions in
which the sign of the difference is reversed.

Previous studies have noted that satellite observa-
tions of mean sea surface wind speeds tend to be larger
than analysis or reanalysis estimates in both the Tropics
(e.g., Meissner et al. 2001; Bentamy et al. 2003) and

FIG. 2. Mean, std dev, skewness, and kurtosis fields for the SeaWinds, SSM/I, ERA-40, and NCEP–NCAR sea surface wind speed
datasets. The solid line in the skewness plots is the zero contour.
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over the Southern Ocean (e.g., Yuan 2004); these ear-
lier results are consistent with the differences presented
in Fig. 3. Caires et al. (2004) noted that mean(w) in the
Tropics was higher in the ERA-40 data than in the
NCEP–NCAR reanalysis data, again consistent with
the results presented in Fig. 3. Chelton and Freilich
(2005) compared SeaWinds wind speed observations
with NCEP and ECMWF operational analysis fields
and also found that in some years the ECMWF analysis
mean(w) is biased low relative to the SeaWinds
mean(w) field, although it is also biased low relative to
the NCEP analyses.

As was noted by Chelton and Freilich (2005), some
of the differences in mean(w) between the remotely
sensed and reanalysis datasets may arise because satel-
lite observations measure wind stress, which is then
converted to 10-m equivalent neutral-stability winds
without accounting for stratification effects (Liu and
Tang 1996). Reanalysis models, on the other hand, at-
tempt to simulate the actual winds at 10 m. Chelton and
Freilich (2005) estimate that the difference between ac-
tual 10-m winds and equivalent neutral-stability winds
can account for �0.2 m s�1 of the difference between
the remotely sensed and simulated wind fields. Further-
more, reanalysis models do not resolve small-scale
structures in sea surface temperature that modify the
local boundary layer stability with a measurable local
effect on sea surface winds (e.g., Chelton et al. 2004).
Chelton and Freilich (2005) also emphasize the fact that
remotely sensed observations of sea surface winds are
sensitive to the vector velocity difference between the

ocean surface and the 10-m wind, rather than the 10-m
wind itself, while reanalysis models neglect surface cur-
rents and assume a rigid bottom boundary; reanalyzed
wind fields will therefore be biased relative to remotely
sensed winds in regions of swift surface currents (e.g.,
Kelly et al. 2001, 2005). This effect may account for
some of the differences between the moment fields,
particularly in the regions of relatively swift surface cur-
rents around the equator and the Southern Ocean.

b. Weibull parameters

Fields of the Weibull scale and shape parameters, a
and b, for each of the SeaWinds, SSM/I, ERA-40, and
NCEP–NCAR surface wind speed datasets are pre-
sented in Fig. 4. For each of the datasets considered, the
field of the Weibull shape parameter a has essentially
the same structure as the field of mean(w). Further-
more, all four datasets share the same overall distribu-
tion of b: the Weibull shape parameter varies between
2 and 3 in the NH midlatitudes, over the Indo-Pacific
warm pool, and on the equatorward flank of the SH
surface westerly jet; between 3 and 4 over the Southern
Ocean; and above 4 on the equatorward flanks of the
subtropical highs, with values up to 6 over the subtropi-
cal Atlantic and eastern Pacific. Maxima in b are gen-
erally larger in the SeaWinds and ERA-40 surface wind
data than in the SSM/I and NCEP–NCAR reanalysis
datasets.

As was discussed in Part I of this study, an essential
feature shared by both the SeaWinds sea surface
wind observations and the Weibull distribution is

FIG. 3. Maps of the mean, std dev, skewness, and kurtosis fields of the SSM/I, ERA-40, and NCEP–NCAR datasets minus the
corresponding fields of the SeaWinds observations.
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that skew(w) is a concave upward function of the
ratio mean(w)/std(w), such that the skewness is posi-
tive where the ratio is small, near zero where the
ratio is intermediate, and negative where the ratio is
large. Kernel density estimates of the joint PDF of

mean(w)/std(w) with skew(w) for each of the SeaWinds,
SSM/I, ERA-40, and NCEP–NCAR reanalysis datasets
are presented in Fig. 5, along with the theoretical curve
for a Weibull variable. A scatterplot of mean(w)/std(w)
against skew(w) for the buoy data is presented in Fig. 6.

FIG. 4. Same as in Fig. 2, but for the Weibull a and b parameters.

FIG. 5. Kernel density estimates of the joint PDFs (contoured on logarithmic scales) of mean(w)/std(w) with skew(w) for SeaWinds,
SSM/I, ERA-40, and NCEP–NCAR sea surface wind speeds. The thick black curve is the predicted relationship between moments for
a Weibull variable.
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Too few buoys were available for a meaningful estimate
to be made of the joint PDF of mean(w)/std(w) with
skew(w) from buoy data. Evidently, despite differences
in detail, all five datasets are in qualitative agreement
regarding the relationship between the moments of sea
surface wind speed. In particular, the theoretical
Weibull curve runs through the joint PDFs of the Sea-
Winds, SSM/I, ERA-40, and NCEP–NCAR reanalysis
data, and through the scatter of the buoy data. It is
demonstrated in Part I that the relationships between
the fields of mean(w), std(w), and skew(w) can be
qualitatively understood in terms of boundary layer dy-
namics subject to fluctuating large-scale forcing and
nonlinear surface drag.

There is also agreement among these five data-
sets regarding deviations in the structure of wind
speed PDFs from Weibull. In all datasets, the slope of
the relationship between skew(w) and the ratio
mean(w)/std(w) is steeper than that of the Weibull
curve for low values of the ratio, and it is shallower than
that of the Weibull curve for larger values of the ratio.
Using a Monte Carlo approach, it was demonstrated in
Part I that the probability was vanishingly small of the
apparent non-Weibull structure of the SeaWinds obser-
vations arising due to sampling fluctuations of a truly
Weibull population. Similar calculations for the SSM/I,
ERA-40, NCEP–NCAR reanalysis, and buoy datasets
(not shown) indicate that the probability is also vanish-
ingly small such that the non-Weibull structure in these
datasets is attributable to sampling fluctuations of a
Weibull variable.

To examine the geographical distribution of non-

Weibull structure in sea surface winds, maps of the ob-
served skew(w) field minus the skew(w) field predicted
for a Weibull variable with the observed mean(w) and
std(w) [Eq. (4)] were computed for each of the SeaWinds,
SSM/I, ERA-40, and NCEP–NCAR datasets (Fig. 7).
In all four datasets, the estimated skew(w) is more
negative in the Tropics and more positive in the NH
midlatitudes than is the skewness field for the equiva-
lent Weibull variable. In the reanalysis datasets, the
skewness field over the Southern Ocean is more nega-
tive than the skewness of the equivalent Weibull field;
this is consistent with the negative biases in these
datasets of skew(w) over the Southern Ocean evident
in Figs. 2 and 3.

FIG. 6. Scatterplot of mean(w)/std(w) vs skew(w) for NDBC
(triangles), TAO (squares), and PIRATA (asterisks) buoy obser-
vations. The solid curve is the predicted relationship between
moments for a Weibull variable.

FIG. 7. Maps of the observed SeaWinds, SSM/I, ERA-40, and
NCEP–NCAR skew(w) fields minus the skew(w) fields of the
equivalent Weibull variables.
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In Part I of this study, it was noted that the Weibull
distribution provides a reasonable approximation to the
PDF of SeaWinds sea surface wind speeds, although
there are large-scale differences between the observed
moment fields and those associated with best-fit
Weibull distributions. The present analysis demon-
strates that these differences are evident in all the
datasets under consideration and that the main features
of the differences between observed and Weibull mo-
ment fields are consistent between different datasets.

5. Seasonal variability

The analyses of the PDFs of sea surface wind speed
presented in the previous section and in Part I used
data from throughout the entire year, without regard
for seasonal variability. Considerable regional (if not
global) seasonal evolution of the PDF of w is expected.
Characterization of this seasonal variability is a basic
element of the full characterization of the PDF of sea
surface wind speeds. Furthermore, it is possible that the
apparent non-Weibull structure of the sea surface wind
speeds discussed in the previous section is a conse-
quence of this nonstationarity in the statistics of w: sea-
sonal evolution in the a and b parameters of an instan-
taneously Weibull variable could yield a year-round

PDF that is no longer Weibull. To assess the seasonal
evolution of the probability distributions of sea surface
winds, the SSM/I dataset is subdivided into four sea-
sons: March–May (MAM); June–August (JJA); Sep-
tember–November (SON), and December–February
(DJF). The SSM/I dataset is used rather than the Sea-
Winds observations because of its relatively long dura-
tion; as was discussed in section 4, the PDFs of sea
surface wind speed in the SeaWinds and SSM/I datasets
agree in their essential features. A description follows
of the seasonal evolution of the statistical properties of
w, in terms of both moments and Weibull parameters.

a. Moments

The fields of mean(w), std(w), skew(w), and kurt(w)
for each of the MAM, JJA, SON, and DJF seasons are
presented in Fig. 8. The seasonal cycle in mean(w) is
greatest in the midlatitudes, particularly in the North-
ern Hemisphere, with the strongest mean wind speeds
occurring in the winter season (DJF in NH; JJA in SH).
Annual variability in mean(w) is considerably smaller
in the subtropics, with somewhat stronger mean wind
speeds along the equatorward flank of the subtropical
highs in the winter season than in the summer. An ex-
ception in the subtropics is the equatorward flank of the
Indian Ocean subtropical high, which displays a

FIG. 8. Same as in Fig. 2, but for each of the MAM, JJA, SON, and DJF seasons for the SSM/I data.
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marked annual cycle in mean(w) associated with the
Australasian monsoon. A seasonal meridional migra-
tion of the equatorial doldrums is also evident.

As was the case with mean(w), midlatitude values of
std(w) are stronger in the winter season than in the
summer season, with a strong seasonal cycle evident in
the NH and a weaker cycle in the SH. Variability in the
subtropics is relatively weak in all seasons.

Throughout the seasonal cycle, skew(w) is positive in
the NH extratropics; in general, largest positive values
occur in JJA and smallest positive values occur in DJF.
Conversely, skew(w) remains close to zero throughout
the year over the Southern Ocean. The band of positive
skewness on the equatorward flank of the SH surface
westerly jet varies in strength over the seasonal cycle in
opposite phase to the cycle of mean(w) in the jet:
skew(w) in this band is relatively high when the mean
jet is weak, and skew(w) is relatively low when the jet
is strong. In the subtropics, the region in which skew(w)
is negative evolves seasonally. Generally, in the sum-
mer (winter) hemisphere, this region is somewhat

larger (smaller) and the values of skew(w) are more
(less) strongly negative. An exception to this tendency
is in the subtropical Indian Ocean, in which skew(w)
becomes most strongly negative on the equatorward
flank of the subtropical high in the NH summer. Skew-
ness of w is positive over the Indo-Pacific warm pool
throughout the year. In general, the most negative val-
ues of kurt(w) in the extratropics of either hemisphere
occur in the winter season and the most positive values
occur in the summer season. In all seasons, the kurt(w)
field is relatively noisy in comparison to the lower-
order moment fields.

b. Weibull parameters

Fields of the Weibull size and shape parameters, a
and b, for each of the MAM, JJA, SON, and DJF sea-
sons are displayed in Fig. 9. The seasonal evolution of a
follows that of mean(w), as would be expected.
Throughout the seasonal cycle, values of b are between
2 and 3 in the NH extratropics, over the Indo-Pacific
warm pool, and along the equatorward flank of the SH

FIG. 9. Same as in Fig. 4, but for each of the MAM, JJA, SON, and DJF seasons for the
SSM/I data.
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westerly jet. Over the Southern Ocean, b varies be-
tween 3 and 4. In all seasons, the largest values of b
occur in the subtropics, along the equatorward flanks of
the subtropical highs where mean(w) is strong and
std(w) is relatively low; in these regions, b can exceed a
value of 5. In general, b is largest in the spring and
summer.

January and July maps of the Weibull b parameter in
the North Atlantic sector estimated from 30 yr worth of
ship data were presented in Isemer and Hasse (1991).
This earlier study indicated that b is close to 2 through-
out the North Atlantic with the exception of a subtropi-
cal band of high values (between 3 and 4) that migrated
equatorward in the winter and poleward in the summer,
in close agreement with the seasonal evolution of b
displayed in Fig. 9. Conversely, the results of Pavia and
O’Brien (1986, hereafter PO) differ significantly from
the results of the present study. Pavia and O’Brien con-
sidered a single year of ship observations, zonally av-
eraged into four different ocean basins (Atlantic, In-
dian, western Pacific, and eastern Pacific). As is dis-
cussed in Part I, the data coverage in PO of the Tropics
and SH midlatitudes was sparse. The annual cycles of
the Weibull-scale parameter a reported in PO are
broadly in agreement with the results presented in Fig.
9. On the other hand, the estimates of b presented in
PO are markedly different than those of the present
study. The values of b reported in PO are in general
considerably lower than those presented in Fig. 9; in
particular, the results of PO present no evidence over
any of the four ocean basins of subtropical maxima in b.
These maxima appear in all datasets considered in this
study and in all seasons, and their existence is consistent
with the regions of negatively skewed w described in
this study and in Bauer (1996). We conclude that the
differences between the characterization of b in PO and
that of the present study, both in terms of geographical
structure and seasonal evolution, arise because of the
limited data used in PO (leading to sampling errors)

and their use of zonal averaging (as structure in b is not
zonally symmetric).

To assess whether the apparent non-Weibull struc-
ture of w evident in Figs. 5–7 is a result of seasonal
variation in the Weibull parameters, the joint PDFs of
mean(w)/std(w) with skew(w) were calculated for each
of the MAM, JJA, SON, and DJF seasons (Fig. 10). For
each season, the joint PDF is characterized by the re-
lationship between moments characteristic of the full
year (Fig. 5), such that the theoretical curve for a
Weibull variable runs through the joint PDF. Evidently,
the seasonal sea surface wind speeds are no less
Weibull than the full-year wind speeds. However, nei-
ther are they more Weibull: as in the year-round data,
for each season the slope of the relationship between
the ratio mean(w)/std(w) and skew(w) is steeper than
the slope of the Weibull curve for small values of the
ratio and shallower for large values of the ratio. The
non-Weibull structure characteristic of the full-year
data is also evident in the seasonally stratified data.

Maps of the SSM/I skew(w) field minus the equiva-
lent Weibull skew(w) field obtained using the SSM/I
mean(w) and std(w) fields, for each of the MAM, JJA,
SON, and DJF seasons, are presented in Fig. 11. In all
seasons, difference fields between the observed and
Weibull fields are similar in pattern and magnitude to
difference fields obtained using data from throughout
the year (the second panel in Fig. 7). Evidently, the
deviation of the year-round PDF of w from Weibull is
not a consequence of seasonal nonstationarity: the sea
surface wind speeds in each season also display consid-
erable non-Weibull behavior.

6. Discussion and conclusions

A number of previous studies (e.g., PO; Isemer and
Hasse 1991; Bauer 1996; Pryor and Barthelmie 2002)
have investigated the probability distribution of sea sur-
face wind speeds, w, in which it has been demonstrated

FIG. 10. Same as in Fig. 5, but for each of the MAM, JJA, SON, and DJF seasons of the SSM/I data.
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that the probability distribution is generally well ap-
proximated by the two-parameter Weibull distribution.
However, most of these earlier studies were regional in
scale. The one previous effort to characterize the prob-
ability distribution of w on a global scale (PO) used
only a single year’s data with limited coverage in the
Tropics and the Southern Hemisphere. The recent de-
velopment of global-scale wind speed datasets of sev-
eral years’ duration allows a reevaluation of the char-
acterization of the probability distribution of sea sur-
face wind speeds over the entire World Ocean.

In this study, an intercomparison has been made of
the probability distribution of sea surface wind speeds
as characterized by four global datasets of long dura-
tion with high resolution in space and time. Two of

these datasets are reanalysis products (NCEP–NCAR
and ERA-40) obtained by using an atmospheric general
circulation model to dynamically interpolate between
observations that are unevenly sampled in space and
time. A third dataset, the SSM/I, is derived from pas-
sive satellite observations of the sea surface blended
with surface analysis fields to fill in data gaps and pro-
vide wind directions. A fourth dataset consists of
active sea surface vector wind observations from the
SeaWinds scatterometer on the QuikSCAT satellite. A
significant drawback of the first three of these datasets
is that they are hybrids of observations and models, but
they have the benefit of being of relatively long dura-
tion. Conversely, the scatterometer sea surface wind
speeds are more direct observations, but presently only
6 yr of data are available. Importantly, these datasets
agree (in essential features) in their characterization of
the probability density functions of sea surface wind
speeds, both in terms of the three lowest-order mo-
ments and of the best-fit parameters to the Weibull
distribution. In particular, in all datasets considered,
the wind speed skewness field has been shown to have
a characteristic functional dependence on the ratio of
the mean of the wind speed to its standard deviation:
the skewness is a concave upward function of this ratio,
such that it is positive for small values of the ratio, near
zero for intermediate values, and negative for larger
values. This relationship was also shown to hold in buoy
data from the Northern Hemisphere midlatitudes and
the tropical Pacific and Atlantic Oceans. The Weibull
distribution has been shown to provide a reasonably
accurate approximation to this relationship, although
distinctly non-Weibull behavior is evident in all
datasets.

It should be noted, however, that the quantitative
differences between the PDFs of w characterized by the
different datasets considered in this study are not neg-
ligible. Quantities such as air–sea fluxes estimated using
these different datasets will thus differ quantitatively.
Because they are not corrupted by GCM biases, Sea-
Winds observations would generally be preferred for
such calculations. However, some applications, such as
global estimates of air–sea fluxes (e.g., Isemer and
Hasse 1991; Wanninkhof et al. 2002) over long time
scales, require the long datasets that are only available
through reanalysis products. The biases of the wind
speed moments in the different datasets described in
the present study should be taken into account when
interpreting the results of calculations in which these
wind speed datasets have been used.

The present study has also considered the evolution
of the PDFs of sea surface wind speeds over the annual

FIG. 11. Same as in Fig. 7, but for each of the MAM, JJA,
SON, and DJF seasons for the SSM/I data.
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cycle in the SSM/I dataset. It is found that the Weibull
approximation is equally good in each of the MAM,
JJA, SON, and DJF calendar seasons, and that the de-
viations from Weibull behavior evident in the full-year
data are not simply a result of the seasonal nonstation-
arity of the Weibull parameters. The present study ex-
tends the result of previous studies characterizing the
seasonal evolution of the sea surface wind speed
Weibull parameters, which were geographically limited
(e.g., Isemer and Hasse 1991) or used a dataset of too
limited a duration to yield statistically robust estimates
(e.g., PO).

The present study has taken advantage of long-
duration global datasets of sea surface winds with high
resolution in space and time that have only recently
become available to produce a statistically robust char-
acterization of the seasonal and geographical structure
of the probability distribution of sea surface wind
speeds. It is to be expected that refinements to this
picture will be made as the quality and duration of wind
speed datasets improve. Given the leading-order simi-
larity of the statistical properties of the four datasets
considered, however, it is not expected that the char-
acterization of large-scale features in sea surface wind
speed PDFS will change qualitatively. In particular, it is
evident in all datasets and in all seasons that skew(w) is
a concave upward function of the ratio mean(w)/std(w),
positive where this ratio is small, close to zero where
the ratio is intermediate, and negative where the ratio is
large. A mechanistic model presented in Part I of this
study is able to qualitatively characterize this relation-
ship but is quantitatively inaccurate. A goal of future
research will be the construction of physically based
models that can quantitatively reproduce the robust re-
lationships between statistical moments of the sea sur-
face wind speeds that have been demonstrated in this
study.
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