A I g O r|th m S ROBERT SEDGEWICK | KEVIN WAYNE

4.3 MINIMUM SPANNING TREES

> Introduction

> greedy algorithm

> edge-weighted graph API
> Kruskal's algorithm

> Prim's algorithm

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu > COnteXt

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

Algorithms

> Kruskal's algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne

A I g O r|th m S ROBERT SEDGEWICK | KEVIN WAYNE

KRUSKAL'S ALGORITHM DEMO

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Kruskal's algorithm demo

Consider edges in ascending order of weight.

 Add next edge to tree T unless doing so would create a cycle.
graph edges

sorted by weight

!

0-7 0.16

2-3 0.17

@ @ 1-7 0.19

@ 0-2 0.26
5-7 0.28

@ @ 1-3 0.29

1-5 0.32

@ 2-7 0.34

4-5 0.35

@ @ 1-2 0.36
4-7 0.37

an edge-weighted graph 0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

Kruskal's algorithm demo

Consider edges in ascending order of weight.
 Add next edge to tree T unless doing so would create a cycle.

in MST —> 0-7 0.16

O,
@ @
)

does not create a cycle

Kruskal's algorithm demo

Consider edges in ascending order of weight.
 Add next edge to tree T unless doing so would create a cycle.

does not
create a cycle 0-7 0.16

@ in MST —» 2-3 0.17

Kruskal's algorithm demo

Consider edges in ascending order of weight.
 Add next edge to tree T unless doing so would create a cycle.

does not create a cycle
0-7 0.16

G 2-3 0.17
in MST — 1-7 0.19

O,

o
O, ©

Kruskal's algorithm demo

Consider edges in ascending order of weight.

 Add next edge to tree T unless doing so would create a cycle.

O,

O,

does not create a cycle

0-7
2-3
1-7

in MST — 0-2

0.16
0.17
0.19
0.26

Kruskal's algorithm demo

Consider edges in ascending order of weight.

 Add next edge to tree T unless doing so would create a cycle.

does not create a cycle

0-7
2-3
1-7
0-2

in MST — 5-7

0.16
0.17
0.19
0.26
0.28

Kruskal's algorithm demo

Consider edges in ascending order of weight.

 Add next edge to tree T unless doing so would create a cycle.

creates a cycle

not in MST ——

©

2-3
1-7
0-2
5-7

0.16
0.17
0.19
0.26
0.28

10

Kruskal's algorithm demo

Consider edges in ascending order of weight.
 Add next edge to tree T unless doing so would create a cycle.

creates a cycle

0-7 0.16
\ 2-3 0.17

G a 1-7 0.19

a 0-2 0.26
a 5-7 0.28

0 hot in MST ——

Kruskal's algorithm demo

Consider edges in ascending order of weight.

 Add next edge to tree T unless doing so would create a cycle.

creates a cycle

not in
MST

0-7
2-3
1-7
0-2
5-7

0.16
0.17
0.19
0.26
0.28

12

Kruskal's algorithm demo

Consider edges in ascending order of weight.
 Add next edge to tree T unless doing so would create a cycle.

@ in MST —>

does not create a cycle

0-7
2-3
1-7
0-2
5-7

4-5

©o O O O O

.16
.17
.19
.26
.28

.35

13

Kruskal's algorithm demo

Consider edges in ascending order of weight.

 Add next edge to tree T unless doing so would create a cycle.

creates a cycle

hot in MST —>»

0-7
2-3
1-7
0-2
5-7

4-5

©o O O O O

.16
.17
.19
.26
.28

.35

14

Kruskal's algorithm demo

Consider edges in ascending order of weight.

 Add next edge to tree T unless doing so would create a cycle.

creates a cycle

not in MST —>»

0-7
2-3
1-7
0-2
5-7

4-5

©o O O O O

.16
.17
.19
.26
.28

.35

15

Kruskal's algorithm demo

Consider edges in ascending order of weight.

 Add next edge to tree T unless doing so would create a cycle.

creates a cycle

not in MST —>

0-7
2-3
1-7
0-2
5-7

4-5

©o O O O O

.16
.17
.19
.26
.28

.35

16

Kruskal's algorithm demo

Consider edges in ascending order of weight.

 Add next edge to tree T unless doing so would create a cycle.

does not create a cycle

0-7
2-3
1-7
0-2
5-7

4-5

in MST —>» 6-2

©o O O O O

.16
.17
.19
.26
.28

.35

.40

17

Kruskal's algorithm demo

Consider edges in ascending order of weight.
 Add next edge to tree T unless doing so would create a cycle.

a minimum spanning tree

0-7
2-3
1-7
0-2
5-7

4-5

6-2

©o O O O O

.16
.17
.19
.26
.28

.35

.40

18

Kruskal's algorithm: visualization

19

Kruskal's algorithm: visualization

19

4.3 MINIMUM SPANNING TREES

Algorithms

> Prim's algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne

21

PRIM'S ALGORITHM DEMO

> Prim’'s algorithm

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

an edge-weighted graph

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

© O O O O O O O O O O O O O o o

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

23

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

24

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

min weight edge with

exactly one endpointin T

edges with exactly
one endpointin T
(sorted by weight)

l

in MST —> 0-7 0.16
0-2 0.26
0-4 0.38
6-0 0.58

25

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

MST edges
0-7

26

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.
 Add to T the min weight edge with exactly one endpointin T.
 Repeat until V - 1 edges.

min weight edge with edges with exactly

exactly one endpoint in T one endpointin T
(sorted by weight)

l

inMST —> 1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

MST edges
0-7

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

MST edges
0-7 1-7

28

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.
 Add to T the min weight edge with exactly one endpointin T.
 Repeat until V - 1 edges.
min weight edge with edges with exactly

exactly one endpoint in T one endpointin T
(sorted by weight)

l

in MST —> 0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
1-2 0.36
4-7 0.37
0-4 0.38
6-0 0.58

MST edges
0-7 1-7

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

MST edges
0-7 1-7 0-2

30

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.
 Add to T the min weight edge with exactly one endpointin T.
 Repeat until V - 1 edges.
min weight edge with edges with exactly

exactly one endpoint in T one endpointin T
(sorted by weight)

l

in MST —> 2-3 0.17
5-7 0.28
1-3 0.29
1-5 0.32
4-7 0.37
0-4 0.38
6-2 0.40
6-0 0.58

MST edges
0-7 1-7 0-2

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

MST edges
0-7 1-7 0-2 2-3

32

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.
 Add to T the min weight edge with exactly one endpointin T.
 Repeat until V - 1 edges.

min weight edge with 2egies Tl ey

exactly one endpoint in T one endpoint in T

(sorted by weight)

l

in MST —> 5-7 0.28
1-5 0.32
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58

MST edges
0-7 1-7 0-2 2-3

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

MST edges
0-7 1-7 0-2 2-3 5-7

34

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.
 Add to T the min weight edge with exactly one endpointin T.
 Repeat until V - 1 edges.

min weight edge with SEEES WD &Ly

exactly one endpoint in T one endpoint in T

(sorted by weight)

l

in MST —> 4-5 0.35
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58

MST edges
0-7 1-7 0-2 2-3 5-7

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

MST edges
0-7 1-7 0-2 2-3 5-7 4-5

36

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.
 Add to T the min weight edge with exactly one endpointin T.
 Repeat until V - 1 edges.

min weight edge with 2egies Tl ey

exactly one endpointin T one endpoint in T

(sorted by weight)

l

in MST —> 6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

MST edges
0-7 1-7 0-2 2-3 5-7 4-5

37

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.

 Add to T the min weight edge with exactly one endpointin T.

 Repeat until V - 1 edges.

MST edges
0-7 1-7 0-2 2-3 5-7 4-5 6-2

38

Prim’s algorithm: visualization

39

Prim’s algorithm: visualization

39

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?
e E
e V
* logk

log™* E

1-7 is min weight edge with
exactly one endpoint in T

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?

e E <« try all edges
e V

* logk

log* E

1-7 is min weight edge with
exactly one endpoint in T

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?

e F <«—— try all edges

.« V

¢ log E <€—— yse a priority queue!
* log*E

e]

1-7 is min weight edge with
exactly one endpoint in T

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

41

Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
 Key = edge; priority = weight of edge.
 Delete-min to determine next edge e = v-wto add to T.

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\of crossing edges
1-7 0.19

.26
.28
.34
.37
.38
.58

© O O O OO0

Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
 Key = edge; priority = weight of edge.
 Delete-min to determine next edge e = v-wto add to T.
e Disregard if both endpoints v and w are marked (both in 7).

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\of crossing edges
1-7 0.19

.26
.28
.34
.37
.38
.58

© O O O OO0

41

Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
 Key = edge; priority = weight of edge.
 Delete-min to determine next edge e = v-wto add to T.
e Disregard if both endpoints v and w are marked (both in 7).
e Otherwise, let wbe the unmarked vertex (notin T):
- add to PQ any edge incident to w (assuming other endpoint not in 7)
- add e to T and mark w

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\of crossing edges
1-7 0.19

.26
.28
.34
.37
.38
.58

© O O O OO0

41

Lazy implementation of Prim’s algorithm

Prim(graph G) Visit(vertex u)

P(Q = empty priority queue of edges color u black
color all vertices grey for all edges (u,v)

it v is grey
PQ.insert((u,v))

Visit(0)
while(|A| < n - 1)
(u,v) = PQ.DeleteMin()
if u or v is grey
A=AU (u,v)
if u is grey
Visit(u)
else // v is grey
Visit(v)

42

Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional
to E log E and extra space proportional to E (in the worst case).

43

Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional
to E log E and extra space proportional to E (in the worst case).

delete min E log E

insert E log E

43

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in 7.

44

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in 7.

Observation. For each vertex v, need only min weight edge connecting v to 7.

44

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in 7.

Observation. For each vertex v, need only min weight edge connecting v to 7.
« MST includes at most one edge connecting v to 7. Why?

44

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in 7.

Observation. For each vertex v, need only min weight edge connecting v to 7.
« MST includes at most one edge connecting v to 7. Why?
e |If MST includes such an edge, it can take cheapest such edge. Why?

44

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

45

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

/ Pqg has at most one entry per vertex

Eager solution. Maintain a PQ of vertices connected by an edge to T,
where priority of vertex v = weight of min weight edge connecting vto T.

0

1 1-7 0.19

2 0-2 0.26 —<«—— red: on PQ
3 1-3 0.29

4 0-4 0.38

5 5-7 0.28

6 6-0 0.58

7 0-7 0.16

black: on MST

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

/ Pqg has at most one entry per vertex

Eager solution. Maintain a PQ of vertices connected by an edge to T,
where priority of vertex v = weight of min weight edge connecting vto T.
 Delete min vertex v and add its associated edge e = v-wto T.

.19
.26 <«— red: on PQ
.29
.38
.28
.58
.16

NOoOOuth WwiN RO
O R
I
ocNoNoNolNolNeNe

black: on MST

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in T.

/ Pqg has at most one entry per vertex

Eager solution. Maintain a PQ of vertices connected by an edge to T,
where priority of vertex v = weight of min weight edge connecting vto T.
 Delete min vertex v and add its associated edge e = v-wto T.

 Update PQ by considering all edges e = v—-x incident to v

- ignore if xis already in T

- add x to PQ if not already on it

- decrease priority of x if v—x becomes min weight edge connecting x
to T

1-7 0.19
0-2 0.26 —«—— red: on PQ
.29
0-4 0.38
7 0.28
-0 0.58
7 0.16

NOoOOuth WwiN RO
v
o

black: on MST A

Eager implementation of Prim’s algorithm

Prim(graph G)
P(Q = empty priority queue ot vertices
cost = array of size n
edge = array of size n
color all vertices grey
Visit(0)
while(PQ not empty)

u = PQ.DeleteMin()
A = AU edge|u]
Visit(u)

Visit(vertex u)
color u black
for all edges (u,v)

if v is grey
color v red
PQ.insert(v, w(u,v))
cost|v| = w(u,v)
edge|v| = (u,v)

elseif (v is red) and (w(u,v) < cost|v])
PQ.DecreaseKey(v, w(u,v))
cost|v| = w(u,v)

edge|v| = (u,v)

46

Prim's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, V delete-min, E decrease-key.

47

Prim's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, V delete-min, E decrease-key.

47

Prim's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, Vdelete-min, E decrease-key.

unordered array

Bottom line.
* Array implementation optimal for dense graphs.

47

Prim's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, Vdelete-min, E decrease-key.

unordered array

binary heap log V log V logV ElogV

Bottom line.
* Array implementation optimal for dense graphs.
e Binary heap much faster for sparse graphs.

47

Prim's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, Vdelete-min, E decrease-key.

unordered array

binary heap log V log V logV ElogV
d-way heap loga V dlogsV loga V E logevV
Bottom line.

* Array implementation optimal for dense graphs.
e Binary heap much faster for sparse graphs.
* 4-way heap worth the trouble in performance-critical situations.

47

Prim's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, Vdelete-min, E decrease-key.

unordered array

binary heap log V log V logV ElogV
d-way heap loga V dlogsV loga V E logevV
Fibonacci heap 17 log Vi 1 E+VlogV

+ amortized
Bottom line.

* Array implementation optimal for dense graphs.
e Binary heap much faster for sparse graphs.

 4-way heap worth the trouble in performance-critical situations.
* Fibonacci heap best in theory, but not worth implementing.

47

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

How difficult?
e E+V
e V
* logV
log* V
e 1

add edge to tree adding edge to tree
would create a cycle

48

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

How difficult?

e E+V

. Vv run DFS from v, check if w is reachable
(T has at most V - 1 edges)

* logV

* log*V

e]

add edge to tree adding edge to tree
would create a cycle

48

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

How difficult?

e E+V

. Vv run DFS from v, check if w is reachable
(T has at most V - 1 edges)

* logV

log>X< VV <«——— use the union-find data structure !

e 1

add edge to tree adding edge to tree
would create a cycle

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

49

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.
 Maintain a set for each connected component in T.

49

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.
 Maintain a set for each connected component in T.
* If vand ware in same set, then adding v-w would create a cycle.

(v)——)

Case 1: adding v-w creates a cycle

49

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.
Efficient solution. Use the union-find data structure.
 Maintain a set for each connected component in T.

* If vand ware in same set, then adding v-w would create a cycle.
 To add v-wto T, merge sets containing v and w.

(v)——)

Case 1: adding v-w creates a cycle Case 2: add v-w to T and merge sets containing v and w

49

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.
 Maintain a set for each connected component in T.
* If vand ware in same set, then adding v—-w would create a cycle.
 To add v-wto T, merge sets containing v and w.

> &y

Case 1: adding v-w creates a cycle Case 2: add v-w to T and merge sets containing v and w

49

Kruskal's algorithm: Java implementation

public class KruskalMST
{

private Queue<Edge> mst = new Queue<Edge>();

public KruskalMST(EdgeWeightedGraph G) <—F+—— build priority queue
{ (or sort)

MinPQ<Edge> pg = new MinPQ<Edge>(G.edges());

UF uf = new UF(G.V(Q));
while (!pg.isEmpty() && mst.size() < G.V(Q-1)

{
Edge e = pg.delMin(); <«—F+—— (greedily add edges to MST
int v = e.either(), w = e.other(v);
1f (luf.connected(v, w)) <«<—f+—— edge v-w does not create cycle
{
uf.union(v, w); <«<——— merge sets
mst.enqueue(e); <«—F— add edge to MST
}
¥

}

public Iterable<Edge> edges()
{ return mst; }

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to
E Tog E (in the worst case).

51

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to
E log E (in the worst case).

build pq 1 E
delete-min E log £
union Vv log* V1
connected E log* V¥

t amortized bound using weighted quick union with path compression

51

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to
E log E (in the worst case).

build pq 1 E
delete-min E log £
union Vv log* V1
connected E log* V¥

t amortized bound using weighted quick union with path compression

recall: log*V < 5 in this universe

\4

Remark. If edges are already sorted, order of growth is E Tog* V.

4.3 MINIMUM SPANNING TREES

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu > COnteXt

http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

53

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 EloglogV Yao

53

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 EloglogV Yao

1976 EloglogV Cheriton-Tarjan

53

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 EloglogV Yao

1976 EloglogV Cheriton-Tarjan

1984 Elog*V, E+VlogV Fredman-Tarjan

53

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 EloglogV Yao
1976 EloglogV Cheriton-Tarjan
1984 Elog*V, E+VlogV Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 EloglogV Yao

1976 EloglogV Cheriton-Tarjan

1984 Elog*V, E+VlogV Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan

1997 E a(V) log a(V) Chazelle

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 EloglogV Yao

1976 EloglogV Cheriton-Tarjan

1984 Elog*V, E+VlogV Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan
1997 E a(V)log a(V) Chazelle

2000 E a(V) Chazelle

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 EloglogV Yao

1976 EloglogV Cheriton-Tarjan

1984 Elog*V, E+VlogV Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan
1997 E a(V) log a(V) Chazelle

2000 E a(V) Chazelle

2002 optimal Pettie-Ramachandran

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 EloglogV Yao
1976 EloglogV Cheriton-Tarjan
1984 Elog*V, E+VlogV Fredman-Tarjan
PRINCETON
1986 E log (log* V) Gabow-Galil-Spencer-Tarjan UNIVERSITY
1997 E a(V)log a(V) Chazelle
2000 E a(V) Chazelle
2002 optimal Pettie-Ramachandran

20xx E 72?

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 EloglogV Yao
1976 EloglogV Cheriton-Tarjan
1984 Elog*V, E+VlogV Fredman-Tarjan
PRINCETON
1986 E log (log* V) Gabow-Galil-Spencer-Tarjan UNIVERSITY
1997 E a(V) log a(V) Chazelle
2000 E a(V) Chazelle
2002 optimal Pettie-Ramachandran
20xx E 72?

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).

53

Euclidean MST

Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.

54

Euclidean MST

Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.

Brute force. Compute ~ N2 / 2 distances and run Prim's algorithm.

54

Euclidean MST

Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.

Brute force. Compute ~ N2 / 2 distances and run Prim's algorithm.
Ingenuity. Exploit geometry and doitin~ ¢ N log N.

54

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness” of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

S

@
Y
@

/

NNSA

outbreak of cholera deaths in London in 1850s (Nina Mishra)

55

Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness” of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

@
Y
@

/

NNSA

outbreak of cholera deaths in London in 1850s (Nina Mishra)

S

Applications.
 Routing in mobile ad hoc networks.
 Document categorization for web search.
e Similarity searching in medical image databases.
» Skycat: cluster 109 sky objects into stars, quasars, galaxies.

55

Single-link clustering

k-clustering. Divide a set of objects classify into k coherent groups.

Distance function. Numeric value specifying "closeness” of two objects.

Single link. Distance between two clusters equals the distance
between the two closest objects (one in each cluster).

Single-link clustering. Given an integer k, find a k-clustering that
maximizes the distance between two closest clusters.

distance between two clusters)

distance between

two closest clusters

4-clustering

56

Single-link clustering algorithm

“Well-known” algorithm in science literature for single-link clustering:

« Form V clusters of one object each.

* Find the closest pair of objects such that each object is in a different

cluster, and merge the two clusters.
 Repeat until there are exactly k£ clusters.

57

Single-link clustering algorithm

“Well-known” algorithm in science literature for single-link clustering:

« Form V clusters of one object each.

* Find the closest pair of objects such that each object is in a different

cluster, and merge the two clusters.
 Repeat until there are exactly k£ clusters.

Observation. This is Kruskal's algorithm.
(stopping when k connected components)

57

Single-link clustering algorithm

“Well-known” algorithm in science literature for single-link clustering:
« Form V clusters of one object each.
* Find the closest pair of objects such that each object is in a different
cluster, and merge the two clusters.
 Repeat until there are exactly k£ clusters.

Observation. This is Kruskal's algorithm. W ..\
(stopping when k connected components) ~< h %{\
L—\,\ o
< q{)
h ﬁ /,
.
AR TR ¥ o §

Alternate solution. Run Prim; then delete k£ —1 max weight edges.

57

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

%ﬂmmﬂﬁmmh T —

gene 1
gene n
Skin Liver Lung Breast Tumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors Breast
Basal

Reference: Botstein & Brown group O gene expressed

B gene not expressed

58

