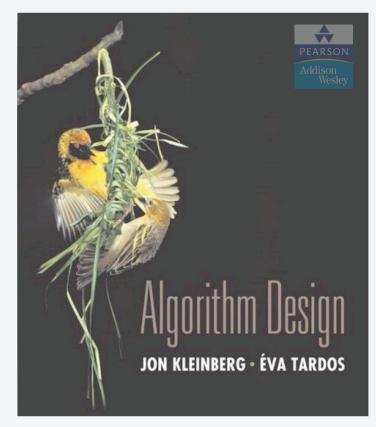


Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley Copyright © 2013 Kevin Wayne http://www.cs.princeton.edu/~wayne/kleinberg-tardos

7. NETWORK FLOW I

- max-flow and min-cut problems
- Ford-Fulkerson algorithm
- max-flow min-cut theorem
- capacity-scaling algorithm
- shortest augmenting paths
- blocking-flow algorithm
- unit-capacity simple networks



SECTION 7.1

7. NETWORK FLOW I

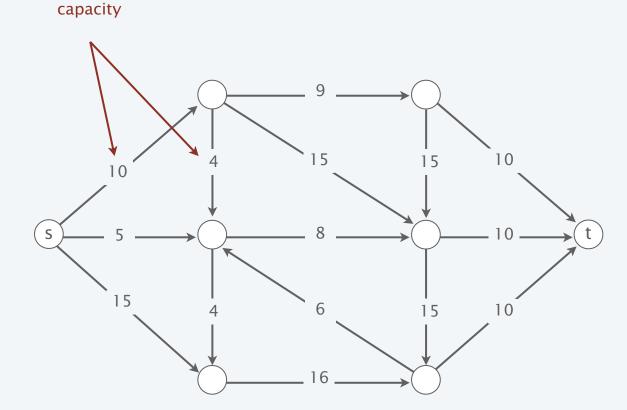
max-flow and min-cut problems

- Ford-Fulkerson algorithm
- max-flow min-cut theorem
- capacity-scaling algorithm
- shortest augmenting paths
- blocking-flow algorithm
- unit-capacity simple networks

Flow network

- Abstraction for material flowing through the edges.
- Digraph G = (V, E) with source $s \in V$ and sink $t \in V$.
- Nonnegative integer capacity c(e) for each $e \in E$.

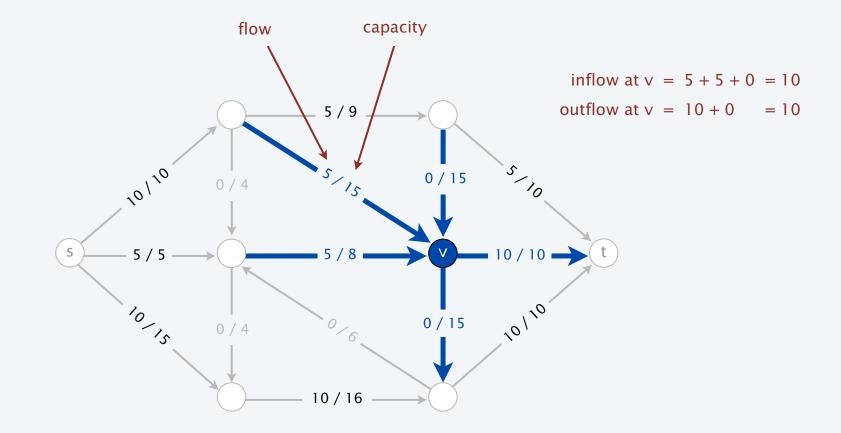
no parallel edges no edge enters s no edge leaves t



Maximum flow problem

Def. An *st*-flow (flow) *f* is a function that satisfies:

• For each $e \in E$: • For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [capacity] [flow conservation]

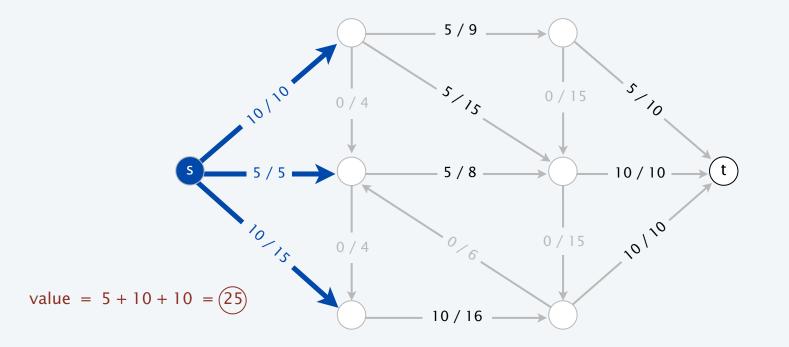


Maximum flow problem

Def. An *st*-flow (flow) *f* is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ [flow conservation] *e* out of *v* e in to v

Def. The value of a flow f is: $val(f) = \sum f(e)$. e out of s



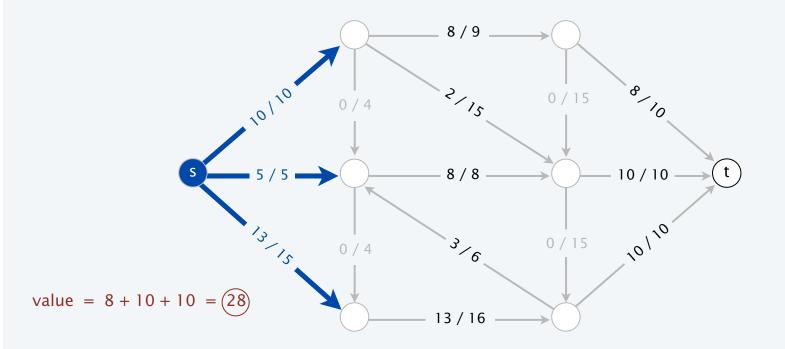
Maximum flow problem

Def. An *st*-flow (flow) *f* is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ [flow conservation] e out of ve in to v

Def. The value of a flow f is: $val(f) = \sum f(e)$. e out of s

Max-flow problem. Find a flow of maximum value.

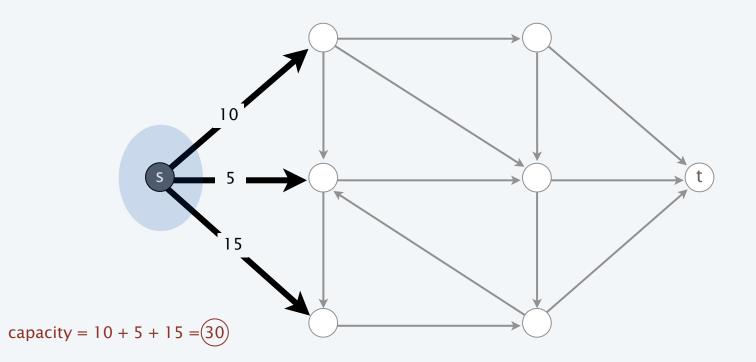


Minimum cut problem

Def. A *st*-cut (cut) is a partition (*A*, *B*) of the vertices with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$

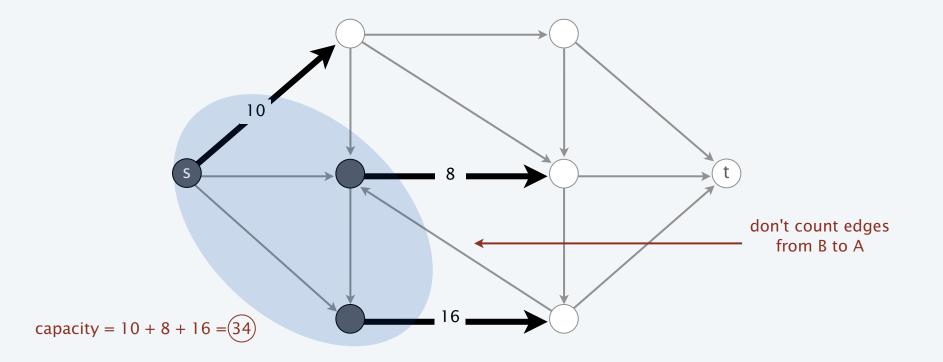


Minimum cut problem

Def. A *st*-cut (cut) is a partition (*A*, *B*) of the vertices with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$

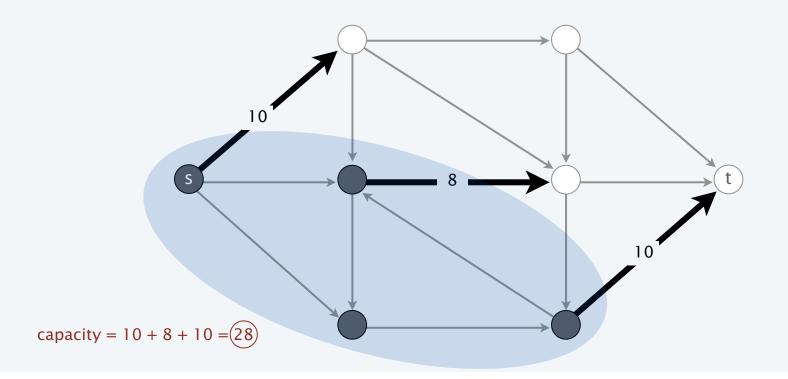


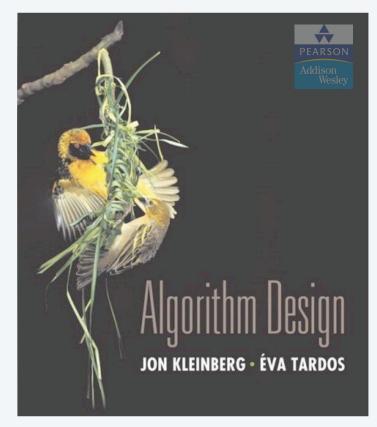
Def. A *st*-cut (cut) is a partition (A, B) of the vertices with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$

Min-cut problem. Find a cut of minimum capacity.



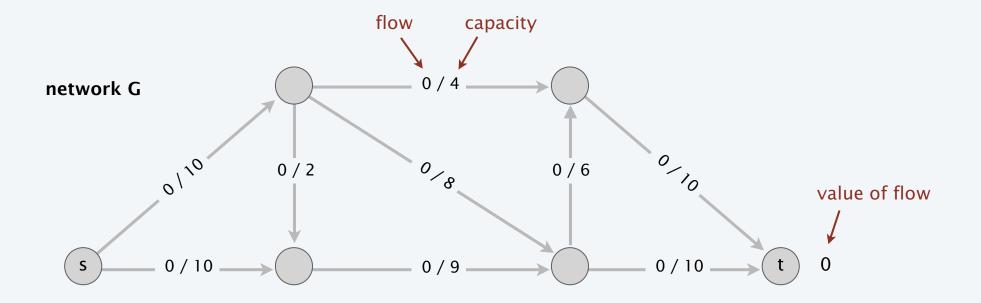


SECTION 7.1

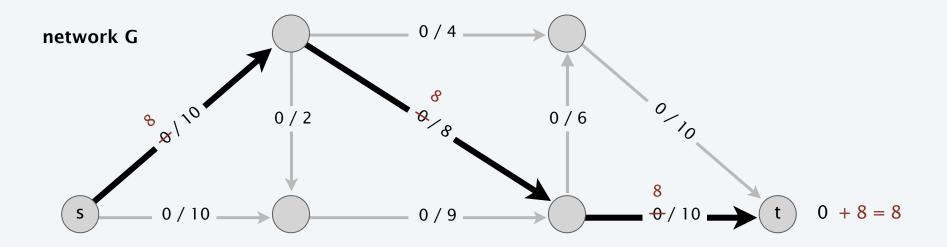
7. NETWORK FLOW I

- max-flow and min-cut problems
- Ford-Fulkerson algorithm
- max-flow min-cut theorem
- capacity-scaling algorithm
- shortest augmenting paths
- blocking-flow algorithm
- unit-capacity simple networks

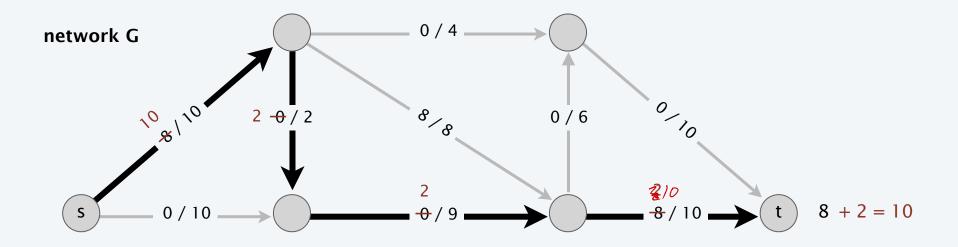
- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.



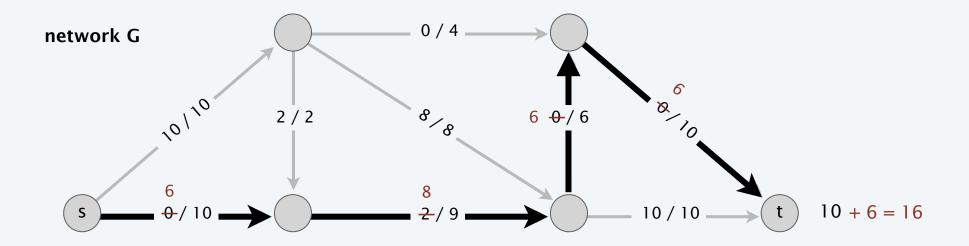
- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.



- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.



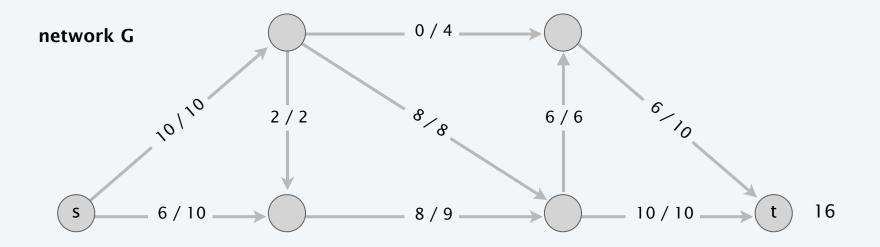
- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.



Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.

ending flow value = 16



- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck.

