
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

Copyright © 2013 Kevin Wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Sep 8, 2013 6:40 AM

7. NETWORK FLOW I

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

SECTION 7.1

7. NETWORK FLOW I

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

・Abstraction for material flowing through the edges.

・Digraph G = (V, E) with source s ∈ V and sink t ∈ V.

・Nonnegative integer capacity c(e) for each e ∈ E.

Flow network

3

s t5

15

10
15

16

9

15

6

8 10

154

4 10

10

capacity

no parallel edges
no edge enters s
no edge leaves t

Def. An st-flow (flow) f is a function that satisfies:

・For each e ∈ E : [capacity]

・For each v ∈ V – {s, t} : [flow conservation]

7

Maximum flow problem

0 / 4

0 / 4 0 / 15

10 /
10

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

10 / 16

 inflow at v = 5 + 5 + 0 = 10

outflow at v = 10 + 0 = 10

flow capacity

0 / 15

€

f (e)
e in to v
∑ = f (e)

e out of v
∑

€

0 ≤ f (e) ≤ c(e)

8

Maximum flow problem

Def. An st-flow (flow) f is a function that satisfies:

・For each e ∈ E : [capacity]

・For each v ∈ V – {s, t} : [flow conservation]

Def. The value of a flow f is: val(f) =

0 / 4

10 /
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

0 / 15

value = 5 + 10 + 10 = 25

0 / 4

0 / 6

10 / 16

0 / 15

€

v(f) = f (e)
e out of s
∑ .

€

f (e)
e in to v
∑ = f (e)

e out of v
∑

€

0 ≤ f (e) ≤ c(e)

9

Maximum flow problem

Def. An st-flow (flow) f is a function that satisfies:

・For each e ∈ E : [capacity]

・For each v ∈ V – {s, t} : [flow conservation]

Def. The value of a flow f is: val(f) =

Max-flow problem. Find a flow of maximum value.

0 / 4

10 /
10

10 / 105 / 5s

8 / 10

8 / 9

8 / 8

10 /
1013 / 15

0 / 15

value = 8 + 10 + 10 = 28

0 / 4

3 / 6

13 / 16

0 / 15

t

2 / 15

€

f (e)
e in to v
∑ = f (e)

e out of v
∑

€

0 ≤ f (e) ≤ c(e)

€

v(f) = f (e)
e out of s
∑ .

Def. A st-cut (cut) is a partition (A, B) of the vertices with s ∈ A and t ∈ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Minimum cut problem

4

5s

15

10

t

capacity = 10 + 5 + 15 = 30

€

cap(A, B) = c(e)
e out of A
∑

Def. A st-cut (cut) is a partition (A, B) of the vertices with s ∈ A and t ∈ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

10

Minimum cut problem

5

8

don't count edges
from B to A

t

16
capacity = 10 + 8 + 16 = 34

s

€

cap(A, B) = c(e)
e out of A
∑

Def. A st-cut (cut) is a partition (A, B) of the vertices with s ∈ A and t ∈ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Min-cut problem. Find a cut of minimum capacity.

10

Minimum cut problem

6

s

10

t

capacity = 10 + 8 + 10 = 28

8

€

cap(A, B) = c(e)
e out of A
∑

SECTION 7.1

7. NETWORK FLOW I

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

11

Towards a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

s t

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G

0 / 10 0

value of flow

0 / 10

flow capacity

12

Towards a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

s t

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G

0 / 10 0

0 / 10

+ 8 = 8—

8
—

—
8

8

+ 2 = 10

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s�t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

13

Towards a max-flow algorithm

0 / 6

0 / 4

8
 /

 8

network G

0 / 10 8

0
 /
 1

0

t

0 / 2

8
 /
 1

0

8 / 100 / 9

—
1
0 2 —

2

—
2

—s

GIO

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

14

Towards a max-flow algorithm

0 / 4

8 / 8

network G

10

2 / 2
10 /

10

10 / 10s

0 / 6

0 / 10

0 / 10

t2 / 9

6 —

8
—

6
— + 6 = 16

6
—

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

15

Towards a max-flow algorithm

0 / 4

8 / 8

network G

16

2 / 2
10 /

10

10 / 10s

6 / 6

6 / 10

6 / 10

t8 / 9

ending flow value = 16

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

16

Towards a max-flow algorithm

3 / 4

7 / 8

network G

19

0 / 2
10 /

10

10 / 10s

6 / 6

9 / 10

9 / 10

t9 / 9

but max-flow value = 19

