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‣ unit-capacity simple networks
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・Abstraction for material flowing through the edges.

・Digraph G = (V, E) with source s ∈ V  and sink t ∈ V.

・Nonnegative integer capacity c(e) for each e ∈ E.
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Def.  An st-flow (flow)  f is a function that satisfies:

・For each e ∈ E :            [capacity]

・For each v ∈ V – {s, t} :          [flow conservation]
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Maximum flow problem
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Maximum flow problem

Def.  An st-flow (flow)  f is a function that satisfies:

・For each e ∈ E :            [capacity]

・For each v ∈ V – {s, t} :          [flow conservation]

Def.  The value of a flow f  is:  val( f ) =
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Maximum flow problem

Def.  An st-flow (flow)  f is a function that satisfies:

・For each e ∈ E :            [capacity]

・For each v ∈ V – {s, t} :          [flow conservation]

Def.  The value of a flow f  is:  val( f ) =

Max-flow problem.  Find a flow of maximum value.
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Def.  A st-cut (cut) is a partition (A, B) of the vertices with s ∈ A  and t ∈ B.

Def.  Its capacity is the sum of the capacities of the edges from A to B. 

Minimum cut problem 
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Def.  A st-cut (cut) is a partition (A, B) of the vertices with s ∈ A  and t ∈ B.

Def.  Its capacity is the sum of the capacities of the edges from A to B. 
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Minimum cut problem 
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Def.  A st-cut (cut) is a partition (A, B) of the vertices with s ∈ A  and t ∈ B.

Def.  Its capacity is the sum of the capacities of the edges from A to B. 

Min-cut problem.  Find a cut of minimum capacity. 
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Minimum cut problem 
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Towards a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.
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Towards a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.
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+ 2 = 10

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s�t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.
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Towards a max-flow algorithm
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Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.
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Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.
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Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.
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Towards a max-flow algorithm
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