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Flow network

« Abstraction for material flowing through the edges.
* Digraph G=(V, E) with source s€V and sink re V.

* Nonnegative integer capacity c(e) for each e € E. no parallel edges

no edge enters s
no edge leaves t

capacity




Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = f(e) = c(e) [capacity]
 Foreachvev-{s,r}: DY f(e) = Y f(e) [flow conservation]
eintov e out of v
flow capacity
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Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = f(e) = c(e) [capacity]
 Foreachvev-{sn: Yfle) = > f(e) [flow conservation]
eintov eout of v

Def. The value of a flow f is: val(f)= D f(e) .

eout of s
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Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = f(e) = c(e) [capacity]
 Foreachvev-{sn: Yfle) = > f(e) [flow conservation]
eintov eout of v

Def. The value of a flow f is: val(f)= D f(e) .

eoutof s

Max-flow problem. Find a flow of maximum value.
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Minimum cut problem

Def. A sr-cut (cut) is a partition (A, B) of the vertices with s€ A and r € B.
Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A, B) = Yy c(e)

e out of A

capacity=10+5+15=



Minimum cut problem

Def. A sr-cut (cut) is a partition (A, B) of the vertices with s€ A and r € B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A, B) = Yy c(e)

e out of A
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Minimum cut problem

Def. A sr-cut (cut) is a partition (A, B) of the vertices with s€ A and r € B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A,B) = Y c(e)

e out of A

Min-cut problem. Find a cut of minimum capacity.

capacity=10+8+10= . >
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Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.

* Find an s~t path P where each edge has f(e) < c(e).

* Augment flow along path P.
* Repeat until you get stuck.

flow capacity
network G Q 0/4 Q
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Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G 0/4 Q
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Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G 0/4 Q
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Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.
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Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.

* Find an s~t path P where each edge has f(e) < c(e).

* Augment flow along path P.
* Repeat until you get stuck.

ending flow value = 16

network G Q 0/4 Q
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Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.

* Find an s~t path P where each edge has f(e) < c(e).

* Augment flow along path P.
* Repeat until you get stuck.

but max-flow value = 19

network G Q 3/4 Q
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