e 7. NETWORK FLOW |

PEARSON

e e
Addison
Wesley

max-flow and min-cut problems
Ford-Fulkerson algorithm
max-flow min-cut theorem
capacity-scaling algorithm

shortest augmenting paths

}\ JON KLEINBERG - EVA TARDOS blocking-flow algorithm
\

unit-capacity simple networks

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Sep 8, 2013 6:40 AM




7. NETWORK FLow |

» max-flow and min-cut problems

\}\ Algnn i Desi

SECTION 7.1



Flow network

« Abstraction for material flowing through the edges.
* Digraph G=(V, E) with source s€V and sink re V.

* Nonnegative integer capacity c(e) for each e € E. no parallel edges

no edge enters s
no edge leaves t

capacity




Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = f(e) = c(e) [capacity]
 Foreachvev-{s,r}: DY f(e) = Y f(e) [flow conservation]
eintov e out of v
flow capacity
inflowatv = 5+5+0 =10
5/9 outflowatv = 10+ 0 =10
o \5 I $
\Q\\ //$ 0/15 //0

_5/8_)?_10/10_)
N
O/ OiS \Q\

10/16



Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = f(e) = c(e) [capacity]
 Foreachvev-{sn: Yfle) = > f(e) [flow conservation]
eintov eout of v

Def. The value of a flow f is: val(f)= D f(e) .

eout of s
5/9
\\Q $//$ ‘9//

\Q o
°—5/5» 5/8 10/10 @
/0 \\°
- Q
S AN

/
value=5+10+10=@ \

10/16



Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = f(e) = c(e) [capacity]
 Foreachvev-{sn: Yfle) = > f(e) [flow conservation]
eintov eout of v

Def. The value of a flow f is: val(f)= D f(e) .

eoutof s

Max-flow problem. Find a flow of maximum value.

8/9

\ 2 ¢

\ - -

/ /
\0\ N) o

°—5/5» 8/8 10/10 @

\/ Q
> N

> \

/\5\ 6 N

/
vaIue=8+lO+lO= \

13/16



Minimum cut problem

Def. A sr-cut (cut) is a partition (A, B) of the vertices with s€ A and r € B.
Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A, B) = Yy c(e)

e out of A

capacity=10+5+15=



Minimum cut problem

Def. A sr-cut (cut) is a partition (A, B) of the vertices with s€ A and r € B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A, B) = Yy c(e)

e out of A

10

v
\ don't count edges

from B to A

/!

AN

) 4

capacity=10+8+16= ._16_)



Minimum cut problem

Def. A sr-cut (cut) is a partition (A, B) of the vertices with s€ A and r € B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A,B) = Y c(e)

e out of A

Min-cut problem. Find a cut of minimum capacity.

capacity=10+8+10= . >



7. NETWORK FLow |

» Ford-Fulkerson algorithm

\}\ Algnn i Desi

SECTION 7.1



Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.

* Find an s~t path P where each edge has f(e) < c(e).

* Augment flow along path P.
* Repeat until you get stuck.

flow capacity
network G Q 0/4 Q

O 0/2 0/& 0/6

(s) 0/10 O 0/9 @

0/10

value of flow

/
@ 0

11



Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G 0/4 Q

JO/]O Q 0/9\0_3/10_)® 0 +8=38

12



Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G 0/4 Q

O 7 2472 5, 0/6 o

JO/]O Q_ém_)Q_%/Dlo_)

@ 8 +2=10

13



Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G Q 0/4
S\
O

2/2 & 6 6-/6
o / s /

@_g/lo_)Q_i/g_)Q 10 /10

N

14



Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.

* Find an s~t path P where each edge has f(e) < c(e).

* Augment flow along path P.
* Repeat until you get stuck.

ending flow value = 16

network G Q 0/4 Q

(s) 6/10 O 8/9 @

15



Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e EE.

* Find an s~t path P where each edge has f(e) < c(e).

* Augment flow along path P.
* Repeat until you get stuck.

but max-flow value = 19

network G Q 3/4 Q

(s) 9/10 O 9/9 @

16



