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(Generalization

Suppose a learning algorithm returns a hypothesis with low training error.

When can we guarantee that the hypothesis’s true error is also low?

Main question: How can we use the training error of a learning
algorithm to estimate the algorithm’s true error?



(Generalization

Main question: How can we use the training error of a learning
algorithm to estimate the algorithm’s true error?

We will focus on binary classification

Recall:
. 1~ _ [~
Training error: R(h,D)=—>» 1 [h(X,-) + Y,}
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True error: R(h) = Ex vy~p [ [ﬁ(X) + Y]]
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Realizable setting

Suppose that each example is in input space X

In the realizable setting:

There is a known concept class C, a set of concepts, where each
concept c is a rule mapping from X" to {0, 1}

There is a concept ¢ € C such that, for any input X,
the label is Y = ¢(X)

Given training data, learning algorithm selects hypothesis h € H
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Realizable setting: Example 1
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Realizable setting: Example 2

Homogeneous linear separators in R?
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Back to generalization

In the realizable setting, we have:

Training error: = %Z [ )}
Risk: R(A) = Prxp (E(X) ” c(X))

Main question:

How can we use training error R(h, D) to upper bound risk R(h),
no matter what distribution the data comes from?

A bad learning algorithm ")
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Can we guarantee zero risk?

What type of guarantee can we hope to achieve?

What if we try to seek a hypothesis which gets zero risk? |s this possible”

Mo/

Example: linear separators
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PAC Learning

A Probably approximately correct (FAC) guarantee is one of the form:
Suppose a learning algorithm outputs a hypothesis h.

[Then with probabillity at least 1 — & (over the training sample), j /’N [ _,//7
[ the risk R(h) is at most ¢ ]
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Towards achieving a PAC guarantee

In the realizable setting, we assume C contains a perfect classifier.

S0, let’s ensure that any hypothesis we select is consistent with the
training sample.

We say that hypothesis h € ‘H is consistent (with trAaining sample D)
if it correctly classifies all the training examples, so R(h, D) =0



Towards achieving a PAC guarantee

In the realizable setting, we assume C contains a perfect classifier.

S0, let’s ensure that any hypothesis we select is consistent with the
training sample.

We say that hypothesis h € ‘H is consistent (with trAaining sample D)
if it correctly classifies all the training examples, so R(h, D) =0

Version space: V = {h c H: R(h, D) = O}

(set of hypotheses in ‘H that are consistent with the training sample)



A PAC guarantee

Version space: V = {h c H: R(h, D) = O}

(set of hypotheses in ‘H that are consistent with the training sample)

- )

Theorem

If |H| < oo, the probability that there is a hypothesis h € V
with risk R(h) > ¢ is at most |H|e™ "*.
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A PAC guarantee

Version space: V = {h c H: R(h, D) = O}

(set of hypotheses in ‘H that are consistent with the training sample)
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Theorem

If |H| < oo, the probability that there is a hypothesis h € V
with risk R(h) > ¢ is at most |H|e "¢. = §
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PAC Learnabillity

We say that C is PAC learnable if there exists an algorithm A which,
for all concepts ¢ € C, for all distributions P over an input space X of
dimension d, and for all e > 0 and 6 € (0, 1), satisfies:

If A is given access to examples drawn from P and labeled
according toc, then with probability at least 1 — d, we have that
the risk Pr(h(X) # c(X)) < ¢.

We say C is efficiently PAC learnable if, in addition, A uses a
number of examples polynomial in d, 1/, and 1/6.



Agnostic Learning

joint distribution over labeled examples (X, Y)
Assume (X1,Y1), ..., (X, V) %S P/
What if no hypothesis in ‘H has zero risk”
What if no hypotheses (among all rules!) have zero risk?

Let’s give up on learning h € ‘H with zero training error.

Instead, try to show that R(h) isn’t much larger than R(h, D)

§

risk empirical risk



Bounding the risk for a fixed hypothesis h

Hoeffding’s inequality

0<Z<1
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Bounding the risk of h selected from finite class H

Suppose, given training data (X1,Y7),...,(X,, Yy) W p ,

we learnarule h € H.

Then with probabillity at least 1 — 0,

N log |H| + log
R(h)gR(h,D)Jr\/Og‘ ’2: 253




Effective size

When |H] is finite, our notion of size was |H|

What if |H| is infinite?

New measure of the size of H: “effective size of H”

Effective size of H relative to training sample S = (z1,x2, ..., xy,)
IS defined as: L —/
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Effective size

When |H] is finite, our notion of size was |H|

What if |H| is infinite?

New measure of the size of H: “effective size of H”

Effective size of H relative to training sample S = (z1,x2, ..., xy,)
IS defined as:
‘ /h(Xl)\ \ Example
His| =[S heH: h(X2) > hi ha hs hy hs
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Effective size

When |H] is finite, our notion of size was |H|

What if |H| is infinite?

New measure of the size of H: “effective size of H”

Effective size of H relative to training sample S = (z1,x2, ..., xy,)
IS defined as:
‘ /h(Xl)\ \ Example
His| =[S heH: h(Xs) > hi he hs hy hs
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Bounding the risk when ‘H has finite VC dimension

Suppose, given training data (X1,Y7),...,(X,, Yy) W p ,

we learnarule h € H.

Then with probabillity at least 1 — 0,

R(h) < R(h, D) + O (\/VC(H) + o8 ;)
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