Learning Theory

Nishant Mehta

Lectures 14 and 15

Generalization

Suppose a learning algorithm returns a hypothesis with low training error.

When can we guarantee that the hypothesis's true error is also low?

Main question: How can we use the training error of a learning algorithm to estimate the algorithm's true error?

Generalization

Main question: How can we use the training error of a learning algorithm to estimate the algorithm's true error?

We will focus on binary classification

Recall:

Training error:
$$\hat{R}(\hat{h}, D) = \frac{1}{n} \sum_{i=1}^{n} 1 \left[\hat{h}(X_i) \neq Y_i \right]$$

True error:
$$R(\hat{h}) = \mathbb{E}_{(X,Y)\sim P} \left[1 \left[\hat{h}(X) \neq Y \right] \right]$$
 (Risk) $= \Pr_{(X,Y)\sim P} \left(\hat{h}(X) \neq Y \right)$

Realizable setting

Suppose that each example is in input space \mathcal{X}

In the *realizable setting*:

There is a known concept class C, a set of concepts, where each concept c is a rule mapping from \mathcal{X} to $\{0,1\}$

There is a concept $c \in \mathcal{C}$ such that, for any input X, the label is Y = c(X)

Given training data, learning algorithm selects hypothesis $\hat{h} \in \mathcal{H}$

$$((x, y_1), (x_n, y_n)) = A(D) = h$$

$$a/gorithn$$

Realizable setting: Example 1

Realizable setting: Example 2

Homogeneous linear separators in \mathbb{R}^2

Back to generalization

In the realizable setting, we have:

Training error:
$$\hat{R}(\hat{h}, D) = \frac{1}{n} \sum_{i=1}^{n} 1 \left[\hat{h}(X_i) \neq c(X_i) \right]$$

Risk:
$$R(\hat{h}) = \Pr_{X \sim P} \left(\hat{h}(X) \neq c(X) \right)$$

Main question:

How can we use training error $\hat{R}(\hat{h}, D)$ to upper bound risk $R(\hat{h})$, no matter what distribution the data comes from?

$$|R(\lambda)|$$

$$= |r(y=1)|$$

$$(x,y) \sim p$$

Can we guarantee zero risk?

What type of guarantee can we hope to achieve?

What if we try to seek a hypothesis which gets zero risk? Is this possible?

Example: linear separators

But we will try to guarantee that
$$n \to \infty$$
, $R(\hat{\lambda}) \to 0$

PAC Learning

A Probably approximately correct (PAC) guarantee is one of the form:

```
Suppose a learning algorithm outputs a hypothesis \hat{h}.
```

```
Then with probability at least 1-\delta (over the training sample), \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}
```

Approximately correct

Towards achieving a PAC guarantee

In the realizable setting, we assume C contains a perfect classifier.

So, let's ensure that any hypothesis we select is consistent with the training sample.

We say that hypothesis $h \in \mathcal{H}$ is *consistent* (with training sample D) if it correctly classifies all the training examples, so $\hat{R}(h, D) = 0$

Towards achieving a PAC guarantee

In the realizable setting, we assume C contains a perfect classifier.

So, let's ensure that any hypothesis we select is consistent with the training sample.

We say that hypothesis $h \in \mathcal{H}$ is *consistent* (with training sample D) if it correctly classifies all the training examples, so $\hat{R}(h, D) = 0$

Version space:
$$\hat{V} = \left\{ h \in \mathcal{H} : \hat{R}(h, D) = 0 \right\}$$

(set of hypotheses in \mathcal{H} that are consistent with the training sample)

A PAC guarantee

Version space:
$$\hat{V} = \left\{ h \in \mathcal{H} : \hat{R}(h, D) = 0 \right\}$$

(set of hypotheses in \mathcal{H} that are consistent with the training sample)

Theorem

If $|\mathcal{H}| < \infty$, the probability that there is a hypothesis $h \in \hat{V}$ with risk $R(h) > \varepsilon$ is at most $|\mathcal{H}|e^{-n\varepsilon}$.

$$\begin{aligned}
\Sigma - b_{4d} \\
n &= 1000 \\
H &= 1000
\end{aligned}$$

$$\begin{aligned}
&\text{100. e} \approx 0 \\
&\text{100. e} \approx 0
\end{aligned}$$

$$\begin{aligned}
&\text{100. e} \approx 0 \\
&\text{100. e} \approx 0 \\
&\text{100. e} \approx 0 \\
&\text{100. e} \approx 0
\end{aligned}$$

$$\begin{aligned}
&\text{100. e} \approx 0 \\
&\text{100. e} \approx 0 \\
&\text{100. e} \approx 0
\end{aligned}$$

$$\begin{aligned}
&\text{100. e} \approx 0 \\
&\text{100. e} \approx 0
\end{aligned}$$

$$\begin{aligned}
&\text{100. e} \approx 0 \\
&\text{100. e} \approx 0
\end{aligned}$$

A PAC guarantee

Version space:
$$\hat{V} = \left\{ h \in \mathcal{H} : \hat{R}(h, D) = 0 \right\}$$

(set of hypotheses in \mathcal{H} that are consistent with the training sample)

Theorem

If $|\mathcal{H}| < \infty$, the probability that there is a hypothesis $h \in \hat{V}$ with risk $R(h) > \varepsilon$ is at most $|\mathcal{H}|e^{-n\varepsilon}$.

Inversion

$$|\mathcal{H}| e^{-n\epsilon} = \delta$$
 $|\mathcal{H}| = e^{n\epsilon}$
 $|\mathcal{H}| = e^{n\epsilon}$

Proof

Let
$$h \in \mathcal{H}$$
 be fixed hypothesis s.t. $A(h) = \epsilon$.

In examples

 $Pr(R(h, D) = 0) \leq (1 - \epsilon) \leq e$
 $1 - x \leq e$

Let
$$M_i = \begin{cases} 5 & \text{if } h(X_i) \neq Y_i \\ 0 & \text{if } h(X_i) = Y_i \end{cases}$$

$$\Pr(M_{i}=1) = R(h)$$

$$\frac{1}{Rernoulli}(R(h))$$

$$\Pr(\hat{R}(h,D)=0) = \Pr(M_{1}=0, M_{2}=0, ..., M_{n}=0)$$

$$= \frac{1}{I}\Pr(M_{i}=0)$$

$$= (I-R(h))$$

$$= (I-S)^{n}$$

Proof of Theorem

$$Pr(\exists h \in \mathcal{H} : \hat{R}(h, D) = 0 \text{ and } R(h) > \varepsilon)$$

$$\leq 2 \int_{\Gamma} \left(\hat{R}(h, p) = 0 \text{ and } R(h) = \epsilon \right)$$
 $h \in \mathcal{H}$

$$= 2 \int_{\Gamma} \left(\hat{R} (h, D) = 0 \right)$$

$$h \in \mathcal{H}$$

$$h : R(h) = \epsilon$$

$$\leq |\mathcal{H}|e^{-n\xi}$$

PAC Learnability

We say that C is PAC learnable if there exists an algorithm A which, for all concepts $c \in C$, for all distributions P over an input space X of dimension d, and for all $\varepsilon > 0$ and $\delta \in (0, 1)$, satisfies:

If A is given access to examples drawn from P and labeled according to c, then with probability at least $1 - \delta$, we have that the risk $\Pr(\hat{h}(X) \neq c(X)) \leq \varepsilon$.

We say C is *efficiently PAC learnable* if, in addition, A uses a number of examples polynomial in d, $1/\epsilon$, and $1/\delta$.

Agnostic Learning

joint distribution over labeled examples (X, Y)

Assume
$$(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P$$

What if no hypothesis in \mathcal{H} has zero risk?

What if no hypotheses (among all rules!) have zero risk?

Let's give up on learning $h \in \mathcal{H}$ with zero training error.

Instead, try to show that R(h) isn't much larger than $\hat{R}(h,D)$

empirical risk

Bounding the risk for a fixed hypothesis h

Hoeffding's inequality

Let
$$Z,Z_1,Z_2,\dots,Z_n\stackrel{\mathrm{iid}}{\sim} P$$
 , where $egin{array}{c} 0\leq Z\leq 1 \\ 0\leq Z_i\leq 1 \ \mathrm{for} \ i=1,\dots,n \end{array}$

Then
$$\Pr\left(\mathbb{E}[Z] \ge \frac{1}{n} \sum_{i=1}^{n} Z_i + \varepsilon\right) \le e^{-2n\varepsilon^2}$$

$$\Pr\left(R(h) \ge \hat{R}(h,D) + \varepsilon\right) \le e^{-2n\varepsilon^2}$$

Lemma. Let h be a fixed hypothesis. Then
$$\Pr\left(R(h) \geq \hat{R}(h,D) + \varepsilon\right) \leq e^{-2n\varepsilon^2}$$
 Equivalently, with probability at least $1 - \delta$ set $= \delta$
$$R(h) \leq \hat{R}(h,D) + \sqrt{\frac{\log \frac{1}{\delta}}{2n}} \quad \text{for } \mathbf{E}$$

$$Z = \begin{cases} f & h(x) \neq y \\ 0 & o.w \end{cases}$$

$$Z_{i} = \begin{cases} f & h(x_{i}) \neq y_{i} \\ 0 & o.w \end{cases}$$

$$E(z) = R(h)$$

Bounding the risk of \hat{h} selected from finite class \mathcal{H}

Suppose, given training data $(X_1,Y_1),\ldots,(X_n,Y_n)\stackrel{\mathrm{iid}}{\sim} P$,

we learn a rule $\hat{h} \in \mathcal{H}$.

Then with probability at least $1 - \delta$,

$$R(\hat{h}) \le \hat{R}(\hat{h}, D) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2n}}$$

Effective size

When $|\mathcal{H}|$ is finite, our notion of size was $|\mathcal{H}|$

What if $|\mathcal{H}|$ is infinite?

New measure of the size of \mathcal{H} : "effective size of \mathcal{H} "

Effective size of ${\cal H}$ relative to training sample $S=(x_1,x_2,\ldots,x_n)$ is defined as:

$$|\mathcal{H}_{|S}| = \left| \left\{ h \in \mathcal{H} : \begin{pmatrix} h(X_1) \\ h(X_2) \\ \dots \\ h(X_n) \end{pmatrix} \right\} \right|$$

of distinct ways we can label sample S using hypotheses in $\mathcal H$

Effective size

When $|\mathcal{H}|$ is finite, our notion of size was $|\mathcal{H}|$

What if $|\mathcal{H}|$ is infinite?

New measure of the size of \mathcal{H} : "effective size of \mathcal{H} "

Effective size of \mathcal{H} relative to training sample $S=(x_1,x_2,\ldots,x_n)$ is defined as:

$$|\mathcal{H}_{|S}| = \left| \left\{ h \in \mathcal{H} : \begin{pmatrix} h(X_1) \\ h(X_2) \\ \dots \\ h(X_n) \end{pmatrix} \right\} \right|$$

Example

	h_1	h_2	h_3	h_4	h_5
$\overline{x_1}$	1	1	1	1	0
x_2	0	0	0	0	0
x_3	0	1	1	0	1

of distinct ways we can label sample S using hypotheses in $\mathcal H$

Effective size

When $|\mathcal{H}|$ is finite, our notion of size was $|\mathcal{H}|$

What if $|\mathcal{H}|$ is infinite?

New measure of the size of \mathcal{H} : "effective size of \mathcal{H} "

Effective size of \mathcal{H} relative to training sample $S=(x_1,x_2,\ldots,x_n)$ is defined as:

$$|\mathcal{H}_{|S}| = \left| \left\{ h \in \mathcal{H} : \begin{pmatrix} h(X_1) \\ h(X_2) \\ \dots \\ h(X_n) \end{pmatrix} \right\} \right|$$

of distinct ways we can label sample S using hypotheses in $\mathcal H$

Example

	h_1	h_2	h_3	h_4	h_5
$\overline{x_1}$	1	1	1	1	0
x_2	0	0	0	0	0
x_3	0	1	1	0	1

effective size = 3

$$|\mathcal{H}_{1S}| = \text{"# of distinct wars that we can label}$$

$$S (\text{label } x_1, x_2, \dots, x_n) \text{ using hypotheses in } \mathcal{K}''$$

$$E \times \text{disple} \quad \text{(threshold functions)}$$

$$\mathcal{X} = \mathbb{R} \quad \mathcal{H} = f \cdot h_t : t \in \mathbb{R}^t \quad h_t (x) = f \cdot 0 \text{ if } x = t$$

C=IR
$$\mathcal{H} = f h_t : t \in IR^{\frac{1}{2}} \quad h_t(x) = f \quad \text{if } x \neq t$$

For any sample of size n ,

 $|\mathcal{H}_{1s}| \leq n+1$

Solitoral Tabelians $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if } x \neq t$
 $f = f \quad \text{to if$

In general, how can we upper bound | His | - "effective size of H W.R.T. S Key Tool: VC dimension Definition: Shattering finite unlabeled training rample (151 = k) We say that \mathcal{H} shathers a set $S \subseteq \mathcal{X}$ if, for every possible labeling of S (2k of these!) there is LEH that is consistent with labeling.

(implication: $|\mathcal{H}_{1S}| = 2^k$)

Example (Linear separators in IR2) = H we can shatter an I with one example Can we shatter some S with 3 examples? Yes. 3 blue points represent a set s.t. 15/=3

Definition (Vapnik - Cherronenkis Dimension) The VC dimension of H, VC(H), is the coordinality of the largest finite $S \subseteq X$ that is shattered by X. If I can shatter arbitrarily large sets S then $VC(H) = \infty$ we cannot achieve this ladeling Example (Threshold functions) can shatter an S with 15/=1 cannot shater any s with |S|=2

YC(H) =1

Bounding the risk when ${\cal H}$ has finite VC dimension

Suppose, given training data $(X_1,Y_1),\ldots,(X_n,Y_n)\stackrel{\mathrm{iid}}{\sim} P$,

we learn a rule $\hat{h} \in \mathcal{H}$.

Then with probability at least $1 - \delta$,

$$R(\hat{h}) \le \hat{R}(\hat{h}, D) + O\left(\sqrt{\frac{\text{VC}(H) + \log \frac{1}{\delta}}{n}}\right)$$