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Dimension reduction

Data is often high-dimensional, but there might be a low-dimensional
subspace that captures most of the variability of the data.

How can we find the best-fit low-dimensional subspace?

How can we represent the data in this low-dimensional sulbspace”?
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PCA: Finding dominant directions of variation




Teaser Irailer: Eigenfaces

Face dataset

Visualization of principal directions of variation

(Moghaddam, Wahid, and Pentland, 1998)



Auto-encoders

An auto-encoder is a way of mapping an input feature vector x
to an approximation X

(also “compressor” or “encoder”)
Typically done by compressing via a feature map ¢
and then decompressing via a reconstruction map p

(@lso “reconstructor” or “decoder”)
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Auto-encoders

We often take k < d (so, z achieves dimension reduction)
(1) Compressing: z = @(x)
(2) Reconstructing: X = p(z) = p(@(x))

Goal: Achieve low reconstruction error (often take squared error):

S0, we seek pair of maps (@, p) such that

[x = %]* = [Ix — p(@(x))||* is small



Neural network view of auto-encoders
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Linear auto-encoders

Among all linear auto-encoders that map to a new representation
of dimension k, which auto-encoder is the best one?

Linear feature map: z = @(x) = Px for P € R**¢

Linear reconstruction map: X = p(z) = Az for A € RY*¥
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Linear auto-encoders: Encoding

Let’s get familiar with the linear encoding/decoding operations

First, let’s write the linear encoder matrix P € R¥*9 as P =
4| plTX

Then, x iIs encoded as z = Px, or = .
Zk plZ_X

If each vector p; is a unit vector, then it represents a direction.

So, the j*" new feature z; measures the activation (or strength)
of x in the direction p;.



Linear auto-encoders: Decoding

Let’s get familiar with the linear encoding/decoding operations

What does decoding look like in terms of linear algebra”

Suppose we have a code (learned representation) z
k
To decode, use linear decoder matrix A € RY*K: Az =) " Ajz

ol

j™ column of A




Linear auto-encoders: projecting onto a subspace

LetV = (vq,..., vi) be a matrix whose columns are orthonormal.
Take P= V' and A= V.

hen linear auto-encoding involves applying the matrix V'V ' to x.
his can also be written as:

k
APx = VV ' x = Z VjV-TX

J
Jj=1

Also, VV' T is a projection matrix that projects any vector x onto
the subspace spanned by vy, ..., Vi .

Simple exercise: whatis VV ! if k =d?

Q: Why are we talking about projection matrices? What about PCA?
A: We will see that PCA uses P = V' and A = V for very special choice of V



Linear auto-encoders

Among all linear auto-encoders that map to a new representation of
dimension k, which auto-encoder is the best one”?

We want P € R**? and A € RY** that minimize reconstruction error:
> ixi — APxi|?
=1

Nice simplification: we may always assume that the columns of Aare
unit norm (so they are direction vectors). Why? Suppose ;" column
of A has norm «;. Then we can form equivalent pair A and P:
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Starting point: kK = 1

| et’s take the case of kK = 1 and consider a fixed matrix P

We have P € R**? and so P = p; for some vector p;



Towards PCA

Given: data X = (x1 xo --- x,) € R?*" (n examples, d dimensions)

] 1 ¢
First step: Center the data so that = » ~x; =0
i =1

/ lowest squared error

How can we find the best one-dimensional projection of the data”

Claim. The following are equivalent:
(@) The best 1D projection of the data

(o) The 1D projection of the data
such that (zi, ..., z,) has maximum variance



Showing the claim in 2 steps

Step 1: Given a reconstructor A, what is
the best encoding z of an example x*?

Step 2: Which reconstructor A gives
the best projection of the data”



Step 1: Given a reconstructor A, what is the best
porojection z of an example x*

Let A = a; and z be the encoding (code word) for example x

Then x=Az=za

How can we find the best encodings z;, ..., z, for data xq, ..., X, !
n
o . 1 A2
Recall our objective: ~ min =) |x; — %]
a1€R? [|lar||=1 1 “—

Zl 122 11111 Zn

Since ap is given, problem decouples: min ||x; — z,-al||2
Zj

Standard exercise. Set derivative of objective (with respect to z;) to
zero and solve for z;:
.

Wegetz,-:alx,-,so pP1 = a1



Step 2: Which reconstructor A gives best 1D prOJectlon’?

Recall X = z;aq

- : : _ T !
Our objective may now be written as: _ Zi = ay Xi |
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Step 2: Which reconstructor A gives best 1D prOJectlon’?

Recall X = z;aq

Our objective may now be written as: zi = ajl xi |
min =Y |x — %7 = min = (Ixi]? - 2zia] x; + 27 a|?)
aieR n ‘1 alERd n
lar]|=1 T a1 ||=1
1 n
= min —— Zi2
a; ER? n P



Step 2: Which reconstructor A gives best 1D prOJectlon’?

Recall X = z;aq
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Step 2: Which reconstructor A gives best 1D prOJectloan

Recall X = z;aq

- : : : T
Our objective may now be written as: Zi =ay Xj |
n
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— (0 since we centered the data



First principal component

Therefore, the first principal direction vy Is the direction along
which the data has the most variance

Given vy, we can compute the first principal component as

T
vy X = (vlTxl vlTX2 vlTxn) — (21 Z> ... zn)
HOW can we flﬂd Vl? Obsel’ve that (sample) covariance matrix

1 — 1 — 1 — \
— Z.2 = — aTx-X-Tal = aT — X'X-T d] — aTCal
/ 1 ™M 1 173 1
n < n < n <
[:1 I:]_ I:].

Question: which unit vector a; maximizes a; Ca; ?



First principal component

Key question: which unit vector a; maximizes a; Ca; ?

Idea: Express C as C = VAV for

A

(Vl Vo ... Vd)

eigenvectors 0 A

eigenvalues

Since eigenvectors form an orthonormal basis, we can ., ... .
) coefficient

express a; in terms of the eigenbasis ( a; = 27:1 o;vj )

From there, It IS not difficult to show that a; = v;.



The best k-dimensional subspace

In general, how can we find the best k-dimensional subspace”?

Suppose we have already found the first r principal directions
Vi Vo, ... v, , and now we seek the (r 4+ 1)™ principal direction

Observation: The principal directions will be orthogonal. Why"?

Hopefully easier question: how can we find the best set of
orthogonal unit basis vectors vy, .. ., Vi ?

1 .
Objective: min ZHXI_Xiuz



The best k-dimensional subspace

original reconstruction (k dimensions)
X; Xi
Zj j (jifeature of @(x;))
_—
| = I
Lgx aXi > v (v x)



The best k-dimensional subspace

original reconstruction (k dimensions)
X >/<\i
Zj j (jifeature of @(x;))
K I I
T
L aXi Z Vi \Vj Xi
j=1
d k
> vy | (Z Vf‘/jT) x
j=1 j=1
d
b=l = | 3w = 3 Tl = S oy
J=k+1 j=k+1 j=k+1
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The best k-dimensional subspace

ldea: We still use eigendecomposition of covariance matrix

C=VAV'
/ \ N :
(Vl Vo ... Vd) .
eigenvectors 0 Ay

eigenvalues



PCA
(i"" example)

How to compute principal components: it column of X
1 L
(1) Center the data X € R¥*" so that ~ Y X =0
=1

- . 1
(2) Compute covariance matrix C = =X X" e RI*d
n

(3) Compute eigendecomposition of C

(va v2...{dv) \(7\1 0)

0 Ad

(4) The j*" principal component is v;” X
The first k PCs are obtained via (vi ... vx)" X € R**"




Properties of principal components

The principal components have a few fundamental properties

(1) PCs 1 through d are in order of decreasing variance
Why? The sample variance of the j™ PC is

Ajv;
1

1 < IR
= (v X =] (n ZXiXiT> vi = v; Cvi = Nllvi[I* = A,
=1 i—1

(2) PCs are uncorrelated. Why”? For any distinct J, k

Ak Vi
1

I 1
=D (T X)i(w X)i = (;XXT) ie = vj' Cvic = A v = 0
=1



Practical Usage

Let A=[wv1 v» ... vi] e matrix of first k principal directions

(1) Get principal components for input x:

/— mean of data

z=A"(x—p)
(2) Reconstruct:

R=Az+pnu=AA"(x—n) +

\

remember to add the
mean back in



Eigenfaces for Recognition

Matthew Turk and Alex Pentland

Vision and Modeling Group
The Media Laboratory
Massachusetts Institute of Technology

Abstract

B We have developed a near-real-time computer system that
can locate and track a subject’s head, and then recognize the
person by comparing characteristics of the face to those of
known individuals. The computational approach taken in this
system is motivated by both physiology and information theory,
as well as by the practical requirements of near-real-time per-
formance and accuracy. Our approach treats the face recog-
nition problem as an intrinsically two-dimensional (2-D)
recognition problem rather than requiring recovery of three-
dimensional geometry, taking advantage of the fact that faces
are normally upright and thus may be described by a small set
of 2-D characteristic views. The system functions by projecting

face images onto a feature space that spans the significant
variations among known face images. The significant features
are known as “eigenfaces,” because they are the eigenvectors
(principal components) of the set of faces; they do not neces-
sarily correspond to features such as eyes, ears, and noses. The
projection operation characterizes an individual face by a
weighted sum of the eigenface features, and so to recognize a
particular face it is necessary only to compare these weights to
those of known individuals. Some particular advantages of our
approach are that it provides for the ability to learn and later
recognize new faces in an unsupervised manner, and that it is
easy to implement using a neural network architecture. ll



Eigenfaces for Recognition

Matthew Turk and Alex Pentland

Vision and Modeling Group
The Media Laboratory
Massachusetts Institute of Technology




Eigenfaces for Recognition

Matthew Turk and Alex Pentland

Vision and Modeling Group
The Media Laboratory
Massachusetts Institute of Technology
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