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Supervised Learning

In supervised learning (specifically, in classification), the goal is to
find a rule, or hypothesis, which achieves low true error with
respect to some unknown distribution P

Since P is unknown, this is only possible if we have some
Experience, which will be given to us in the form of a training set

A natural strategy then is to somehow find a hypothesis that has
low training error



Supervised Learning

First key question: “From what set of hypotheses, or
hypothesis space, will we select our hypothesis?

Hypothesis space - a set of hypotheses, where each
hypothesis is a function that maps a feature vector (an input

vector) to a predicted label

Different hypothesis spaces, along with methods for selecting
a hypothesis given the training data, correspond to different

machine learning methods.

Today, we’ll begin with an intuitive class of methods, called
decision trees



How to represent decision trees

Problem: Predicting whether or not conditions are suitable for cycling
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Another representation

In binary classification, any decision tree can be represented
as a disjunction of conjunctions:

(1) For each root-to-leaf path ending in a positive label,
form a conjunction.

(2) Take the disjunction (OR) of all of the conjunctions
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Another representation
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What are decision trees most suited for?

Instances described by feature-value pairs
» Each feature has small number of possible values
... but we can also hanadle continuous features
Classification (the label is discrete)

... but regression is also possible



Optimal decision tree

|dea: Let’s select the optimal decision tree
What do we mean by “optimal™?

When a decision tree classifies an example, the example
follows a path from the root to some leaf

“Optimal” decision tree: minimizes the average path length,
where the average Is over the training set

Bad news: The problem of constructing optimal decision tree
IS NP-complete

more information



https://people.csail.mit.edu/rivest/pubs/HR76.pdf
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The geometric view
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Easily extends to continuous features
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Main Question

How to select a feature to split on?



Selecting the split feature: Impurity measures

Intuition:

For a low-depth tree, we want paths to end in leaves as soon
as possible

We create a leaf whenever all the examples in a node have the
same label

S0, let’s select a split such that the child nodes are as “pure”
as possible (each child node has examples' labels agree as
much as possible)

How to measure purity”? We need an impurity measure



Entropy

Let Y be a Bernoulli random variable (so, two outcomes: 1 and 0O)
Assume that P(Y =1) =p; and P(Y =0) = pg

Then the entropy of Yis H(Y) = —p1 log p1 — po log po

Note that this is the same as Ey.p ['08“ ﬁ]

N\

The “self-information”, or “surprisal”

Entropy was introduced
by Claude Shannon


https://www.technologyreview.com/2018/12/19/138508/mighty-mouse/

Properties of Entropy

If Yis “pure” (all of its probability mass is on a single outcome),
then H(Y) =0

Q: For what Yis H(Y') maximized,
and what is the maximum value®



Properties of Entropy

If Yis “pure” (all of its probability mass is on a single outcome),
then H(Y) =0

Q: For what Yis H(Y') maximized,
and what is the maximum value®

Fact: Entropy Is concave



Properties of Entropy

If Yis “pure” (all of its probability mass is on a single outcome),
then H(Y) =0

Q: For what Yis H(Y') maximized,
and what is the maximum value®

Fact: Entropy Is concave

H(Y) 0.5

0 0.5 1
P(Y = 1)



Entropy for multiple outcomes

The definition of entropy generalizes to multiple outcomes:

Let Y be a random variable taking values 1, 2, . . ., k
with P(Y =j)=p; forj=1,2,..., k

k
Then the entropy of Y is defined as H(Y) = » ~ —p;jlog p;
=1



Entropy of a collection of examples

Now, let S be a collection of n examples in a node,
consisting of a positive examples and b negative examples

How to extend definition of entropy to the collection $7
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Entropy of a collection of examples

Now, let S be a collection of n examples in a node,
consisting of a positive examples and b negative examples

How to extend definition of entropy to the collection $7

(1) Define Y. as a random variable whose distribution is the
empirical distribution of the class labels with respect to S :

P(Ye=1)=a/n P(Ye=0)=b/n
(2) Define entropy of S as entropy of Ye
So, H(S) = —(a/n)log(a/n) — (b/n)log(b/n)

Consequence: If all examples in S have the same label,
then entropy is O



Entropy after a split: Conditional entropy
Let X be random variable (like a feature) taking values vy, vo, . . .,

Conditional entropy of Y given X
L Entropy of conditional distribution

H(Y | X) = ZP VH(Y | X = v)) P IX =)



Progress after a split: Information gain
Let X be random variable (like a feature) taking values vy, vo, . . .,

Conditional entropy of Y given X
L Entropy of conditional distribution

H(Y | X) = ZP VH(Y | X = v)) P IX =)

Then the mformatlon gain of X relativeto Y Is

IG(Y, X) = H(Y) — H(Y | X)



Progress after a split: Information gain

Let X be random variable (like a feature) taking values vy, vo, . . ., Vi

Conditional entropy of Y given X

Entropy of conditional distribution

— _
H(Y | X) = ZP VH(Y | X = v)) P =)

Then the mformatlon gain of X relativeto Y Is

IG(Y, X) = H(Y) — H(Y | X)

/ Bonus fact

This Iis equivalent to the mutual information of X and Y
I(X;Y)=H(Y)—H(Y | X)=H(X)—H(X|Y)

First equality is a definition. Second one is a nice exercise

(you will need to recall Bayes rule)



Conditional entropy example

We want to select the feature that minimizes the conditional entropy

This is the same as selecting the feature A that
maximizes information gain H(S) — H(S | A)
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Conditional entropy example

We want to select the feature that minimizes the conditional entropy

This is the same as selecting the feature A that
maximizes information gain H(S) — H(S | A)
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Summary so far

We can devise a greedy strategy for selecting the split
feature by using a measure of impurity

One measure of iImpurity is entropy; we select the attribute

which minimizes conditional entropy (maximizes information
gain)

Are there other impurity measures that are commonly used?
Yes!



Gini index
The Gini index is another measure of impurity

For Y having k values and P(Y = j) = p; , the Gini index is:

k
Gini(Y)=1-> p’
j=1

Where does this formula come from? P (Y = J ) — Pj

e

Consider expected error of probability matching predictor
assuming its belief about the true label Y is correct

EXERCISE: Show that E [1[? + Y]} = Gini(Y)

K
So, show that E {1[5? = Y]} =1 - Zp?
j=1



Gini index vs Entropy vs Misclassification rate
for a 2-class problem

0.5

0.4 - Entropy

0.3 A

Misclassification

0.2 - Rate
0.1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

P(Y =1)

Gini is similar to entropy but a bit less aggressive in encouraging purity

Misclassification rate is the probability of an error when predicting
according to the majority



Regression

Regression - predicting a continuous target (a real number)
Questions:

What should we predict in a leaf node”

What impurity measure to use”

When should we stop splitting”?



What should we predict in a leaf node?

Suppose we have decided to stop splitting a node further, so it
becomes a leaf

In classification, our prediction would be the majority vote

For regression?



What should we predict in a leaf node?

Suppose we have decided to stop splitting a node further, so it
becomes a leaf

In classification, our prediction would be the majority vote

For regression”?

Predict the sample mean (i.e. the average)

X3

Faliy True

0.1 0.8

Predict 0.2 <«—— 0.3 0.4 | —— Predict 0.7
0.3 0.9
0.1




What impurity measure to use?

Entropy is no longer useful. \Why?
A good alternative is to use the (sample) variance

Recall that for targets y1, y2, . . ., Yn, the sample variance is

J=1 /‘

sample mean

1 n
Recall: y, = — :
Yn . ;y



When should we stop splitting?

With variance as the impurity measure, it is unlikely that the
impurity measure will ever be zero.

S0, when do we stop splitting”?

This is actually a general question, also relevant for
classification.

A common solution: Use a “tuning parameter” B

Stop splitting once the number of examples in the
node drops below some level B



Ferry-on-time dataset

Overfitting
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Overfitting
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Overfitting

S
Ferry-on-time dataset Q‘QQQQD

® T True Is-Friday

True

---------------------------- Is-Friday 00000000

Qo « + False Stormy

. . /N

False Stormy True

At test time:
It’s a Friday. Will the ferry be on time?

Prediction: No. Because it’s a Friday (?!)

What went wrong here?



Overfitting

Overfitting generally means an algorithm learns a hypothesis that
captures too much information specific to a particular training set,
and the information captured is not as relevant to predicting on
new examples drawn from the same distribution

More formally: suppose that we learn a hypothesis h for which:

There is another hypothesis h” with higher training error but
lower expected error (with respect to a random example being
drawn from the underlying distribution of examples)

Then we say h overfits

Overfitting typically happens when we learn a rule that is more
complicated than necessary



Common Causes of Overfitting

* Noisy examples

» Using a model that is too complicated given the size
of the training set
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Pruning to combat overtitting

wo types of pruning:
* Pre-pruning (early stopping)

* Post-pruning - First, construct the decision tree completely,
resulting in a complex tree. Then, start the actual pruning process.
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Post-Pruning

How to prune at a node”?
* Make the node a leaf, and assign the label according to
mayjority vote (classification) or sample mean (regression)
How to decide whether to prune a node?

 Use a validation set



Validation Set

Randomly split the original training set into two pieces,
a new training set and a validation set.

Use the new training set when constructing decision tree

When pruning, we use the error on the validation set as a
proxy for the true error

New training set Validation set

Original training set



Post-Pruning: Reduced-Error Pruning

How to prune at a node?
Make the node a leaf and assign the label according to majority vote
How to decide whether to prune a node and which node to prune first?

Consider nodes in post-order (bottom-up traversal). That is, before a
node Is considered for pruning, each of its children must first be
considered for pruning.

For each node, compute the change in validation error due to
pruning. If pruning leads to a decrease in validation error, then prune!



The results of reduced-error pruning
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