Random Forests

Nishant Mehta

Lecture 3



Ensemble methods

An ensemble method: a method that predicts by aggregating the
predictions of many hypotheses

Bagged Trees and Random Forests are both ensemble methods

« Common idea: Take the majority vote (for classification) among a
large, diverse set of classifiers, each of which is a decision tree
(trained on a random bootstrap sample of the training set)
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Bootstrap Aggregation (Bagging)

Given a training sample D = (( X1, Y1), (X2, Y2), ..., (X, Yn))
of size n, a bootstrap sample is obtained by drawing n examples
with replacement from D.

For a given learning algorithm, bootstrap aggregation, or bagging,
trains the learning algorithm M times as follows:

Forj=1,2, ... M
e Draw a new bootstrap sample D; from D
e Train the algorithm on D;, giving hypothesis h;
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(Ong, 2014) A primer to bootstrapping



https://github.com/desmond-ong/doBootstrap/blob/master/doBootstrapPrimer.pdf

Bootstrap Aggregation (Bagging)

Given a training sample D = (( X1, Y1), (X2, Y2), ..., (X, Yn))
of size n, a bootstrap sample is obtained by drawing n examples
with replacement from D.

For a given learning algorithm, bootstrap aggregation, or bagging,
trains the learning algorithm M times as follows:

Forj=1,2, ..., M
e Draw a new bootstrap sample D; from D

e Train the algorithm on D;, giving hypothesis h;

When given a new example, the bagged predictor predicts:
e the majority vote among hy, ho, .. ., hy for classification

argmax_|{j € [M]: hj(x) = y}
yeq{l,.2,..., k}

e the mean of hy, ho, ..., hy for regression



Geometry: One decision tree




Geometry: Towards majority vote of 2 decision trees




Geometry: Majority vote of 2 decision trees
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Geometry: Towards majority vote of 3 decision trees




Geometry: Majority vote of 3 decision trees




Geometry: Majority vote of 3 decision trees




Bagged Irees

Each tree Is constructed as follows:
Input
e atraining set of n examples with d features

e Number of trees, M

Algorithm
For each of the M trees:
e Sample (with replacement) n examples from the training set

e [rain the tree using the sample

Are bagged trees a good idea” Yes for regression. For classification,
bagging could be better or worse than a single decision tree.



Random Forest Construction

Each tree is constructed as follows:
Input
e atraining set of n examples with d features
e n'(< n) - number of examples in each decision tree’s training set

e d' (< d) - number of features used to determine the decision at each node
of the tree

e Number of trees, M

Algorithm
For each of the M trees:
e Sample (with replacement) n" examples from the training set

e During tree construction, for each node of the tree, randomly select d’
distinct features on which to base the decision at the node. So, the
best split will be computed based on these d’ features.
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Each tree is constructed as follows:
Input
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Rules of Thumb
e Number of trees, M

Try n’ = n (bootstrap samples)
Algorithm Classification: try d’ = Vd
For each of the M trees: @egression: try d' =d/3 p

e Sample (with replacement) n" examples from the training set

e During tree construction, for each node of the tree, randomly select d’
distinct features on which to base the decision at the node. So, the
best split will be computed based on these d’ features.



Random Forests

Quite old, and yet one of the best methods out there
Intuition for why they work well:

* Trees have low bias (high representational power) but can
have high variance (high sensitivity to particular choice of
training sample). Achieve some variance control by
aggregating over many trees trained on bootstrapped data

* |[f errors of individual models tend not to be correlated
(different models make different types of errors),
the majority vote can far outperform the best individual model

Random forests have this advantage,
but bagged trees do not. Why?



Prediction using a Random Forest

(1) Get a prediction for each tree T in the forest T
(2) Take the majority vote of the predictions (for classification)

Predict argmax |{T € T: T(x) =y}
ye{l,2,....k}

\

set of potential labels



Random Forests

Good news: Good performance in practice

Bad news: A random forest hypothesis is not easily interpretable
(whereas a single decision tree typically is interpretable)



