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Administrivia - Project

Each of you needs to submit a brief, initial proposal by this Friday,
September 22nd. Details on how/where to submit are on Brightspace.

The initial proposal consists of:
(1) A suitably informative title.
(2) Two to three sentences describing the project idea.

This is like an elevator pitch: what you would tell someone if you wanted to
get them excited about your project but only had 30 seconds to do so.

The initial proposals will be shared with the class on Brightspace, along
with your name, email address, and whether you are undergrad/grad.

You all will need to form groups by Friday September 29th. Undergrads
team up with undergrads, and grad students team up with grad students. |
have set up a forum on Ed Discussion for discussions to help find a group,
and you can also email people to find group members or join a group
yourself.



ITraining Error and lrue Error

Suppose that we have sample D of n 1.i.d. examples drawn
according to a distribution P.

The sample error of a hypothesis h with respect to sample D is
A 1 —
R(h, D) = — i, h(x;
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Let A be a learning algorithm trained on sample D and
returning hypothesis hp = A(D). The sample error of hp on D
is called the training error of A and is equal to
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empirical risk



ITraining Error and lrue Error
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empirical risk

The true error of the learning algorithm is

/ R(hp) = E(x,y)~p [f(Y, ED(X))}

also called risk



Model selection

Suppose that we have M learning algorithms, or models.

Form=1,2,..., M, algorithm A, learns a decision tree with max depth m.
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As we increase the learning algorithm index m, we increase the complexity of
the model we are using for learning.

How can we select the best model, i.e., the learning algorithm that obtains
the lowest true error, when all we can compute is the error on samples?



Model selection

Model selection problem comes up all the time.

Other examples of model selection problems include selecting:

* Degree of polynomial, for regression or separating
the input space into two pieces (binary classification)

e Number of trees in a random forest

e How much to prune a decision tree

 Number of nodes in a hidden layer of a neural network (coming up soon)



Hyperparameter tuning

Even after model selection, there is still training to do
(setting the number of trees in a random forest doesn’t mean the trees
have been learned yet!)

Similarly, there are many other “tuning parameters”, or
hyperparameters, for which, even after they are set, the main
parameters still need to be learned.

Examples of hyperparameters that we will see later in the course:
 Amount of regularization in SVM, logistic regression, linear regression
* The learning rate for neural network training

e (Choice of k in nearest neighbor classification

We run into the same question as with model selection:

e How can we select the best hyperparameter configuration,
..e., the learning algorithm that obtains the lowest true error,
when all we can compute is the error on samples”?



Estimating true error

How can we estimate the true error of a single hypothesis?
How about training error? R(hp, D)

No! It’s too optimistic. Imagine the algorithm that
memorizes the training set and predicts totally
randomly on new examples...

Instead, use test error (from an independent test sample)

LS iy h(x)

| Dtest| (X,y) € D,ovs

This Is an unbiased estimator of the true risk



Estimating true error

How well does the test error estimate the true error?

Suppose we have a classification task, so the losses (errors)
are either O or 1, and there are n test examples

Then, with 95% probability, we have*

A A A 1.36
R(hDr Dtest) — R(hD) < W

For zero-one loss, test error has a binomial distribution;
using this fact can give much better confidence interval

* Where does this come from?
A basic concentration inequality called Hoeffding’s inequality



https://en.wikipedia.org/wiki/Hoeffding's_inequality
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Comparing two hypotheses

How can | compare two hypotheses h; and h, based on
their test errors computed from the same test sample”

Approach 1: Form a confidence interval around each
hypothesis’s true error (using the test error)
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Comparing two hypotheses

How can | compare two hypotheses h; and h, based on their
test errors computed from the same test sample?

Approach 2: Compute difference in test errors

R(h1, Drest) — R(hy, Drest) = % Z (Z(y,-, /A71(Xi)) AV /A72(Xi)))

=1

If 95% confidence interval is entirely positive, then
algorithm 2 is better than algorithm 1 (has lower true error)

If 95% confidence interval is entirely negative, then
algorithm 1 is better than algorithm 2



Comparing learning algorithms

How can | compare the performance of many learning algorithms?
(Basic approach) Cross-validation:

e Split data into training set and validation set

Training Set Validation Set

e Run each algorithm A, on training set, vielding hypothesis h,,
e Fvaluate validation error of each /Awm on validation set

What type of split”? 80% training, 20% validation is good rule of thumb



Comparing learning algorithms

How can | compare the performance of many learning algorithms?

(Better approach) k-fold cross-validation:

e Split data into k pieces (of equal size, ideally)
Dl D2 D3 D4 D5

training/validation

Train Train Train Validation Train split for foldj = 4
(k =9)

e |[neachfoldj (forj =1 to k):

e Run each algorithm A, on training set consisting of all parts but
the J* " vart, vielding hypotheS|s hm i
Compute test error on ;" part, E, j = R(hm ), DJ)
k

e Estimate risk of A, using cross-validation error P Z Em,;
j=1



Important special cases of k-fold cross-validation

Leave-one-out cross-validation (LOOCV): For dataset of
size n, set k = n. Each part is one example, hence, during
each fold we “leave one out” during training and test on the
example that was left out.

k = 5: Each part is 20% of the data. Similar to an 80%, 20%
training-test split, but with a reduction in variance by
averaging over the choice of which 20% we test on.

k = 10: Also sensible. As rule of thumb, k between 5 and 10
IS generally fine.



Model selection

How can | do model selection (or hyperparameter tuning),
and also report the error of the selected model?

First, split the data into training set and test set

Next, do cross-validation on the training set to select the model
with the best cross-validation error

For the selected model (algorithm), train the algorithm on the
entire training set. Then report the error on the test set.

Very important: We never ever (!) touch the test set until
we have selected our model/hyperparameters. So, it is a
pristine dataset. Imagine it lives on the moon and we only
go to the moon when we are ready to report the test
error for our finally selected/tuned learning algorithm.



