Support Vector Machines
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Lecture 9



Hard-margin SVM

Hard margin SVM problem

minimize  ||w||?
w,b

subject to y,-((w,x,-} + b) >17i=1,...,n.
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Soft-margin SVM

What if data isn’t linearly separable?

Or, most of the data is separable
with large margin, and some only

\ with very low margin?

Soft-margin SVM problem

n

minimize  [|w|? + CZ &

weR" bER :
EER” =1

subject to y,-((w,x,-)—l—b) >1—&;,,1=1,...,n
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Varying C (linear kernel)

Soft-Margin with C=200 E3
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From “Support Vector Machines and Kernels for Computational Biology” (Ben-Hur et al., 2008)



Soft-margin SVM - Hinge Loss

minimize ||w]|? CZ max{O, 1—yi({w,x) b)}

weR" beR ;
=1
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hinge loss

ghinge()/v )//\) — max{O, 1 — )/)//\}




Soft-margin SVM - Hinge Loss

minimize ||w||?
weR" beR

/(-}I,;l‘)

Ci max{O, 1 — y,-({w,x,-} b)}

=1

hinge loss

ghinge(yv )//\) — max{O, 1 — )/)//\}

minimize
weR” beR

HWH2 + nghinge ()/iv fw,b(Xi))

=1



SVM - Regularization viewpoint

SVM can be viewed as minimizing regularized training error
under hinge loss
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minimize thinge (y,-, fW,b(Xi)) +Afw|®
i=1

Equivalent A=

A =

weR? beR



SVM dual problem

xEeR”
= 1 j= 1

subject to Zy,-oc,- =0
i=1
OS (X,'§ C, i:1,...,n
How to get w and b from this?

W = 5 Vi X;

Zyj% i, xj) for any i satisfying 0 < o; < C

How to predict? fw,b(Xtest) = (W, Xtest) + b = ZYiOCi<Xi, Xiest) + D
i=1



SVM dual problem - Inner products only

xEeR”
= 1 j= 1

subject to Zy,oc, =0
=1

How to predict? fw,b(Xtest) — <W1 Xtest> b= Z)// X X/ Xtest> b
=1

Dual SVM only needs inner products between input examples!



How can we achieve nonlinear classifiers?



|[dea: feature map

Classification in original space Classification in feature space



|[dea: feature map

Use a feature map: P(x): X - H




Kernel trick

Question: Can we compute inner product between input
examples x and z in feature space without explicitly
computing @(x) and ¢(z) ?

In many cases, yes! We use a kernel function:

k(x,z) = (@(x), @(y))

\

Equal to inner product... but we won’t compute it this way!



Example 1: Warm-up exercise



—xample 2: Polynomial kernel, one dimension

The polynomial kernel (one dimension):

r

k(x,z) = (xz + a

What is the feature space?



—xample 3: Polynomial kernel, general dimension

The polynomial kernel (general dimension):
k(x,z) = ((x,z) + a)r

@(x) has one feature for each monomial up to degree r

How many features are there in the feature space”



—xample 3: Polynomial kernel, general dimension

The polynomial kernel:
k(x,z) = ((x,z) + a)r

@ (x) has one feature for each monomial up to degree r

How many features are there in the feature space”
r+d
d

But the kernel can be computed in only O(d)
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(Gaussian kernel

The Gaussian kernel is based on the distance between two examples

x — z||?
k(x,z) = exp ( | = H )
\ bandwidth parameter

The Gaussian kernel is a type of similarity measure,
taking values between O and 1

What is the corresponding feature map @(x) ?



(Gaussian kernel

The Gaussian kernel is based on the distance between two examples

x — z||?
k(x,z) = exp ( | = H )
\ bandwidth parameter

The Gaussian kernel is a type of similarity measure,
taking values between O and 1

What is the corresponding feature map @(x) ?
It's Infinite dimensional!



Varying Gaussian kernel bandwidth
(C kept constant)

Decreasing kernel bandwidth

From the book “Learning with Kernels” (Schélkopf and Smola, 2001)



