
Multiagent Reinforcement Learning in a
Synchronous Strategy Game

Ahmed Siddiqui
Faculty of Computer Science

University of Victoria
Victoria, CA V8P 5C2

jesuisahmedn@gmail.com

Louis Kraak
Faculty of Engineering
University of Victoria
Victoria, CA V8P 5C2
lkraak@uvic.ca

Michail Roesli
Faculty of Engineering
University of Victoria
Victoria, CA V8P 5C2
mroesli@uvic.ca

Swapnil Daxini
Faculty of Physics and Astronomy

University of Victoria
Victoria, CA V8P 5C2

swapneel.dx8@gmail.com

Yang Li
Faculty of Computer Science

University of Victoria
Victoria, CA V8P 5C2

leo19970804@gmail.com

Abstract

A lot of studies have been done on reinforcement learning recently. Q learning,
or DQN tries to solve the single agent vs environment problem, where some other
approaches such as AlphaGo attempt the double agent game. In this project, we
try to find an algorithm to generate an agent that performs well in a multiagent
synchronous strategy game.



1 Introduction

Battlesnake is a synchronous strategy game. It is simply a multiplayer version of the classic game
Snake. The version we are training with is a 11x11 game board with 4 snakes. In each round,
players choose an action from the space left,right,up,down, the snake’s head and body will then
move accordingly. If a snake’s head runs into any obstacle (a snake’s body or wall), it dies. If it runs
into another snake’s head, the shorter snake dies (in a tied situation both snakes die). If it runs into a
food, its length will grow by 1, and its health point resets to 100. Every turn, all snake’s health will
decrease by 1, and once it reaches 0 the snake dies. The last snake alive becomes the winner of the
game. If no snakes live, it is considered a draw. See the reference for a more detailed description
[1]. An image of such a game is shown below in figure 1.

Figure 1: A game of battlesnake in-progress.

2 Related Work

AlphaSnake Zero uses the same approach that AlphaGo Zero used [2], where the training algorithm
consists of 3 stages, self-play, training and pit. Due to the lack of a powerful computing device (a
TPU), the network for AlphaSnake is simplified. AlphaGo uses a two headed network to compute
the value (roughly interpreted as win rate) of the current game board, and also a policy to guide the
next action. As this is a reinforcement learning problem, there is no true label that we can assign to
the training data. Instead, a Monte Carlo Tree Search is used to get a good estimate of the optimal
policy. See figure 2 to see the steps of the Monte Carlo tree search algorithm.

Figure 2: Steps of the MCTS algorithm

3 Method

In each iteration, a number of games are played using the current neural network, with data being
recorded for training. For each turn of the game, we keep the information of the game board (the

2



state), the move each snake made (the action), the computed Q values (estimated win rate), the
transition probability (explained later). Then we use the data to train the network. After training, the
new network competes against the old one and further replace it if performance is better. A general
overview of this AI is shown in figure 3 below. CNN stands for convolutional neural network.
The CNN takes as input a state representing the game from a player’s point of view, and computes
as output the Q values of each action. Then a policy (a probability distribution of all actions) is
computed to guide the AI.

Figure 3: AlphaSnake Zero Model

For the input of the network, we need something that can recover enough information of the game
board. The designed state representation is as follows: The state is a 21x21x3 tensor. The game
board is only 11x11, but the network will quickly struggle to identify where its own head lies. To
combat this, the view of the game is centered at the snake’s head, allowing immediate recognition of
relative position. Imagine you are the snake and you view the world around you, so a 21x21 board
is needed to percieve the original board in the worst case (if we are at the edge). Additionally, every
snake has its own view of the board. The objects in the game are also classified into three channels
explained below.

There are essentially three fundamental things in the game: things that if you run into you die (body
and wall); if you run into, you grow (food); and if you run into some snake will die (head). Thus,
the game board is classified into 3 channels. The first layer is the picture of all the snakes’ heads.
The second one is for all the ’deadly’ obstacles (bodies and walls). And the last one shows all the
food on the board. In all layers, 0 means an empty cell.

In the first layer, the value of a snake’s head is the snake’s length relative to the current player, so
a negative value means a shorter snake’s head and vice versa. Since a snake of the same length as
you also kills you, the value of its head is also negative. Overall, the value roughly tells you how
dangerous a block is. The formula for computing the head value is simply

value = (length of the snake− length of you + 0.5)×multiplier (1)

where the multiplier is to keep the value in the range of [-1, 1] for training purposes. The 0.5 solves
two problems, one mentioned earlier about the snake of same length, and it avoids the value inside
the brackets being zero, causing an ’invisible head’.

In the second layer, the wall is simply represented with 1. We also need something to recover the
direction of a body bock, since it holds the information about how the snake moves on the board.
But what is really essential is how long a body block will remain at its position. If we represent
the body as the number of turns until it will be away, then we can roughly recover the information
of a snake by tracing the increasing value of the body blocks. The number of turns until it will be
removed is simply the body length measured from that body block to the tail of the snake. The value
is calculated using the following formula

value = (number of turns until it’s removed)×multiplier (2)

There are degenerate cases where it is not possible to tell which body belongs to which snake, but
body blocks all work the same way, so it does not matter.

3



In the last layer, all the food is labeled according to the snake’s health points. This has a huge
benefit to reducing the difficulty of learning. It strongly relates the food to health, and no explicit
information for health needs to be stored.

value = (101− your health)×multiplier (3)

Note that for this representation of states, it is impossible to recover the health of other snakes, but
according to the experience of Battlesnake tournaments, it is not a useful information, as death due
to starvation almost never happens in high level games. We use 101 instead of 100 to avoid the value
inside the brackets being zero, resulting in ’invisible food’.

For the output of the network, we need something that can guide the action to take. A policy
could be a good choice, but unlike the game of Go, where a move usually just adds another piece
on the board, MCTS is too expensive for Battlesnake, because a move will drastically change the
game board and thus be very slow to compute. Instead of approximating the optimal policy, it is
easier to obtain a good estimation of the Q values. Assume the optimal function for Q value is
Q(s, a), where it takes as input the current state s and the action a, and it outputs the value (win
rate) of the player if that action a is chosen under state s. An obvious fact is that a game board
of Battlesnake is equivalent to its rotation and reflections (with actions also rotated or reflected, of
course). Thus, we can rotate the board so that the snake is always facing upwards. This mainly has
two benefits. First, it automatically treats all rotations as one, thus reducing overfitting. Second,
there is always a backward move that immediately kills you (run into your own body), so this action
is meaningless to evaluate. If the snake is always facing up, the output space can be transformed
into turn left,go straight,turn right, represented by numeric values 0,1,2. It simplifies the network
and training. Although it is true that only for the very first move, there are technically four choices,
but we don’t care about that one move so much that we want to expand the output space. During
the training, we can also make the reflections of the board and Q value vectors to force the network
to realize symmetry, and hopefully reduce overfitting. Once we have the 3 dimensional vector
〈Q(s, 0), Q(s, 1), Q(s, 2)〉, namely the Q value of each action ai given the current state s, a softmax-
like function is going to generate a probability mass function based on the values, which is the policy.
The softmax-like function, denoted π, is simply softmax with exponent n instead of e.

πn(−→v ) = −→v ◦n · (
∑
i

−→v ◦ni)−1 (4)

Here, −→v is a vector and n is a constant. −→v ◦n denotes the element-wise power. By picking the n, we
can control how explorative the snake is, the higher n is, the more it highlights the higher values in−→v , and thus it would not bother to pick the lower valued actions.

To get a good estimate of the value function without MCTS, we label the Q values according to
the following criteria. From the point of view of any snake, the transition between states is not
deterministic. The transition is a Markov process because it depends on how other snake moves. Let
the function Ψ(s0, a, s1) represents the probability of entering state s1, if you take the action a at
current state s0. Let the Q value vector of state s0 be 〈Q(s0, 0), Q(s0, 1), Q(s0, 2)〉. Say Q(s0, a)
is high and you pick this action a. Now with probability Ψ(s0, a, s1), we then have entered the next
state s1, and we now get the Q values 〈Q(s1, 0), Q(s1, 1), Q(s1, 2)〉. Since the Q values represent
win rate, the optimal strategy is to pick arg maxai

Q(s1, ai). Then we can say that, at state s0,
if we pick action a, with probability Ψ(s0, a, s1), we end up with a win rate of maxai

Q(s1, ai).
Obviously, we can see that the Q value is a weighted sum of the max Q values of its successor states,
thus we have

Q(s0, a) =
∑
si

Ψ(s0, a, si) max
aj

Q(si, aj) (5)

This equation is the core part of AlphaSnake Zero’s training algorithm. We can now refine the Q
value vector by updating its explored entryQ(s0, a). A complete record of a game play gives a chain
of states for each snake. We update the Q values recursively, from the very last state to the first. We
know what maxai Q(s1, ai) is, namely the max value of the successor of s0 recorded in the chain of

4



states. Assuming the network is already somewhat accurate, we don’t want to change Q(s0, a) un-
less maxai Q(s1, ai) has been refined. If maxai Q(s1, ai) was updated to maxai Q

∗(s1, ai) during
the previous step, then we want the new Q∗(s0, a) to be

Ψ(s0, a, s1)×max
ai

Q∗(s1, ai) +
∑

si 6=s1

Ψ(s0, a, si) max
aj

Q(si, aj)

= Ψ(s0, a, s1)×max
ai

Q∗(s1, ai) +
∑
si

Ψ(s0, a, si) max
aj

Q(si, aj)−Ψ(s0, a, s1)×max
ai

Q(s1, a)

= Ψ(s0, a, s1)× [max
ai

Q∗(s1, ai)−max
ai

Q(s1, ai)] +
∑
si

Ψ(s0, a, si) max
aj

Q(si, aj)

= Ψ(s0, a, s1)× [max
ai

Q∗(s1, ai)−max
ai

Q(s1, ai)] +Q(s0, a)

(6)

We can see that if the max of its successor was unchanged then the new valueQ∗(s0, a) just remains
unchanged, too. There is, however, a flaw in this updating method. It has no guarantee on that the
new Q value staying in the range [0, 1], which is the practical range for win rate, and also the range
for the sigmoid function. In practice, if the network is already somewhat good, a bad value should
almost never happen, but we are still supposed to set the bound manually. If it does happen, say the
new Q∗(s0, a) ≥ 1, then this one is guaranteed to be the new maximum since all other Q values
is computed by sigmoid and thus less than 1. Then, it very likely will shoot up its parent state’s Q
value over 1 and recursively messes up the whole chain of states. Thus, we assign the following
bounded value to Q∗(s0, a).

min(max(Ψ(s0, a, s1)× [max
ai

Q∗(s1, ai)−max
ai

Q(s1, ai)] +Q(s0, a), 0), 1) (7)

To complete the final piece of our estimation of Q values, we need to know Ψ, the transition prob-
ability. If we get the actions of every snake, then the transition is almost deterministic, except the
food spawns randomly, but that is a minor factor. Obviously, since the game is synchronous, the
probability of any snake taking an action is independent from others. Ψ(s0, a, s1) is almost equal
to the product of some entry of each policy calculated by other snakes. Let the transition function
Γ(s,
−→
A ) computes the successor state of s given

−→
A , a vector of actions of snakes (omitting the

randomness of food).

Ψ(so, a,Γ(so, 〈a, a1, . . . , ak〉)) ≈ Πk
i=1πn(〈Q(si, 0), Q(si, 1), Q(si, 2)〉)ai

(8)

Here πn is the softmax-like function, si is the ith snake’s view of state s0 (not including you since
you explicitly made action a), and ai ∈ 0, 1, 2 is the action it chose. There is one exception; if a
snake made an action and died right after, then the assigned value is simply 0 since it is usually not
relevant to what last moves other snakes chose unless it died due to head on head collision.

Since the training data is massive, a good trick is to obtain a sample from the training data. There are
various ways to sample the data, but one thing to realize is that late game might be far more important
than the early game. The sampling method used in the training algorithm makes an exponentially
growing gap between samples counting from the last move, to the first. Another trick is to use batch
normalization between layers in the network because reinforcement learning tends to change the
input distribution, it introduces instability to the learning, and batch normalization can address that
problem. Another problem we encountered during training is that after some number of iterations,
the snakes realize that if it runs into something they die, so they come up with the so-called ’chicken
snake’ strategy, where one snake just moves in circles and does nothing. In other words, it is stuck
at a local optimum. To avoid this, we let the snake learn in a modified environment where every
turn the health is reduced by 9, so it will quickly die from starvation and force it to go look for food.
After that, we put it into the original environment. We call that ’learn to walk before you run’. Be
careful with the choice of the decrement value. We still want it to realize that once the health gets to
1, it will die next turn, so the decrement must be a factor of 99. If we prime factorize 99, we can see
the only options are 1, 3, 9, 11, 33, 99.

5



After training, the newly trained network is to be compared with the old network. Several games are
played between them (can use different competing rules, 1v3 or 2v2, etc.). If the new network’s win
rate surpasses a threshold, it will replace the old one. A good way to select the threshold is to use a
binomial distribution to figure out a value such that a worse network (say a win rate less than 50%
in 2v2 games) has a negligible chance of surpassing it.

4 Experiments and Discussion

With limited computational power, we tried the algorithm on a small CNN. It consists of 6 convolu-
tional hidden layers, with 32, 32, 64, 64, 128, 128 filters of size 3x3, respectively. It used ’selu’ as
activation function [3], and batch normalization layers are added between the weights and activation
functions. After running for 154 iterations, we obtained the following results as seen in figure 4 and
figure 5 below.

Figure 4: Cause of Death

Figure 4 above, further analyses the cause of death for the first 45 generations. The algorithm
quickly learns the basics of the game as the deaths by starvation and wall collisions are close to
zero following the 6th generation. However, interestingly, the number of deaths by head collisions
is quite high. This is likely due to the algorithm not being able to control its aggressiveness between
smaller and larger snakes.

6



Figure 5: Average Food Eaten

Figure 5 above depicts the average food eaten per game as well as the game length. We see an
upward trend on the game length, suggesting that further training would result in an overall smarter
AI for the snake.

Other experiments that we have conducted were to compare 16 different generations against one of
them. We compared the winrate, the average time steps in a game, the average food eaten in a game,
the average number of collisions in a game, and the average number of heads hunted in a game in
figure 6, 7, 8, 9, 10 respectively. Generally, we noticed that as the number of model generations/
training iterations increased the winrate, average time steps, food eaten, and heads hunted increased,
while the average number of collisions decreased which are all consistent with what we’d predict
with the increasing winrate as it is getting a better understanding of the rules of the game.

7



Figure 6: Winrate

Figure 7: Average Number of Time Steps

8



Figure 8: Average Number of Food Eaten

Figure 9: Average Number of Collisions

9



Figure 10: Average Number of Heads Hunted

For the final experiment, three different generations of the snakes were added to the Battlesnake
arena to compete against other snake AIs. All performed quite well and currently in the top 150 of
the leaderboard. The 10th and 15th generation AlphaSnake Zero currently sits at 147th and 135th
position on the leaderboards respectively. The 145th generation is currently 100th in the world.
This suggests that creating a top placing snake is possible given that there is still a lot of room for
improvement and optimization for the AI.

The next steps for improving our algorithm include the following:

1. Further experimentation with the look-ahead algorithm and in particular using the Monte
Carlo Tree search algorithm

2. Conduct further testing with varying input parameters for model training
3. See how our model performs as we continue to increase the number of training iterations

and if it reaches more local optimums
4. Consider implementing better heuristics
5. Consider using a better computing device to increase training efficiency

5 Conclusion

We have presented our initial implementation of the AlphaGo version AI algorithm for battlesnake,
which has proven to have a reasonable winrate. Furthermore, it seems to have potential due to
several areas of improvement including look-ahead and a loss function implementation. Our AI has
also proven to be a viable reinforcement learning solution as it has improved throughout each of its
training iterations. We hope to explore our solution further by implementing the previous features,
continuing training our model, and varying our training parameters. We’d also like to further explore
how it compares against other solutions and how to more reliably compare them without bias.

Acknowledgments

We’d like to thank our professor Nishant Mehta for his quick responses to any questions we had and
providing all the help needed to complete the project. Also, we’d like to thank Yang’s colleague
ZhengYu Zhou who had helped us with setting up the cloud computing for training our models
online.

10



References
[1] B. Inc, “Battlesnake documentation.” https://docs.battlesnake.com/, 2020. [Online; accessed 1-

April-2020].

[2] K. S. David Silver, Julian Schrittwieser, “Mastering the game of go without human knowledge.” https:
//www.nature.com/articles/nature24270, 2017. [Online; accessed 1-April-2020].

[3] Klambauer, “Self-normalizing neural networks.” https://arxiv.org/pdf/1706.02515.pdf, 2017.
[Online; accessed 1-April-2020].

11

https://docs.battlesnake.com/
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://arxiv.org/pdf/1706.02515.pdf

	Introduction
	Related Work
	Method
	Experiments and Discussion
	Conclusion

