MAP estimation

Nishant Mehta

Lecture 16

The perils of maximum likelihood estimation

Consider betting on two top chess players

Suppose the true probability that Kasparov wins is $\theta=0.5$ (unknown to us), so Kasparov and Karpov are evenly matched

Instead, we have observed two games. Kasparov won both games. What is the MLE? $\hat{\theta}_{\text{MLE}} =$

So, how much money should we bet on the next game?

Expected cross-entropy loss of $\hat{\theta}_{MLE}$

What is risk under cross-entropy loss when true parameter is $\theta=0.5$ and our estimate is $\hat{\theta}=1$?

$$\mathsf{E}\left[\ell(Y,1)\mid\theta=0.5\right]=$$

Intuition: Imaginary examples

Suppose we imagine that we have extra examples, one example for each class:

$$\tilde{n}_1 = n_1 + 1$$
 $\tilde{n}_0 = n_0 + 1$

This is called *add-one smoothing*, a special case of a more general technique called *additive smoothing*.

Why might this be a good idea?

What happens to the MLE when we include these imaginary examples?

$$\hat{\theta} =$$

Intuition: Imaginary examples

Suppose we imagine that we have extra examples, one example for each class:

$$\tilde{n}_1 = n_1 + 1$$
 $\tilde{n}_0 = n_0 + 1$

This is called *add-one smoothing*, a special case of a more general technique called *additive smoothing*.

Why might this be a good idea?

What happens to the MLE when we include these imaginary examples?

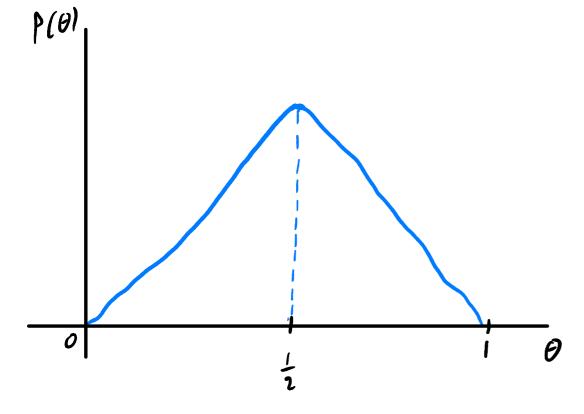
$$\hat{\theta} = \frac{\tilde{n}_1}{\tilde{n}_1 + \tilde{n}_0} = \frac{n_1 + 1}{n_1 + n_0 + 2}$$

Prior distribution

Prior distribution $P(\theta)$

Indicates our probability of belief that θ is the true parameter, prior to seeing any evidence at all

Example: "probably" fair coin

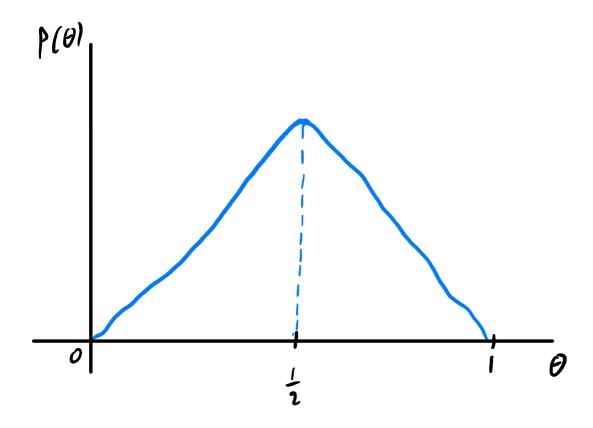


Prior distribution

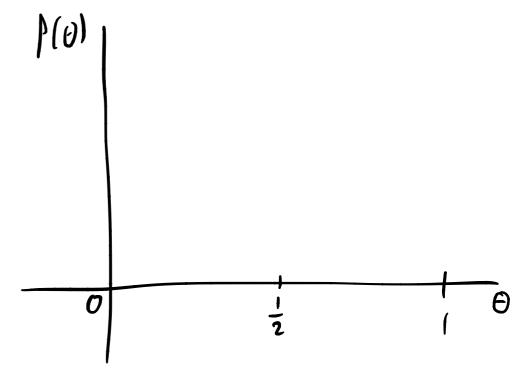
Prior distribution $P(\theta)$

Indicates our probability of belief that θ is the true parameter, prior to seeing any evidence at all

Example: "probably" fair coin



Another example "probably unfair coin"!



Posterior distribution

From Bayes rule, we have

$$P(\theta \mid D) =$$

This quantity is our probability of belief θ is the true parameter, a posteriori of the data.

We call $\theta \mapsto P(\theta \mid D)$ the *posterior distribution* over Θ

Posterior distribution

Bernoulli

 $FI) = [O_1]$

From Bayes rule, we have

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)} = \frac{P(D \mid \theta)P(\theta)}{\int_{\Theta} P(D \mid \theta)P(\theta)d\theta}$$

This quantity is our probability of belief that θ is the true parameter, a posteriori of the data.

We call $\theta \mapsto P(\theta \mid D)$ the *posterior distribution* over Θ

Maximum A Posteriori estimate

From Bayes rule, we have

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)} = \frac{P(D \mid \theta)P(\theta)}{\int_{\Theta} P(D \mid \theta)P(\theta)d\theta}$$

This quantity is our probability of belief that θ is the true parameter, a posteriori of the data.

We call $\theta \mapsto P(\theta \mid D)$ the *posterior distribution* over Θ

The *Maximum a Posteriori estimate* (*MAP estimate*) of θ is

$$\hat{\theta}_{MAP} = \underset{\theta}{\arg \max} P(\theta \mid D) = \underset{\theta}{\arg \max} \frac{P(D \mid \theta)P(\theta)}{P(D)}$$
 ignore

Maximum A Posteriori estimate

From Bayes rule, we have

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)} = \frac{P(D \mid \theta)P(\theta)}{\int_{\Theta} P(D \mid \theta)P(\theta)d\theta}$$

This quantity is our probability of belief that θ is the true parameter, a posteriori of the data.

We call $\theta \mapsto P(\theta \mid D)$ the *posterior distribution* over Θ

The *Maximum a Posteriori estimate* (*MAP estimate*) of θ is

$$\hat{\theta}_{MAP} = \arg \max_{\theta} P(\theta \mid D) = \arg \max_{\theta} \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

$$= \arg \max_{\theta} P(D \mid \theta)P(\theta)$$

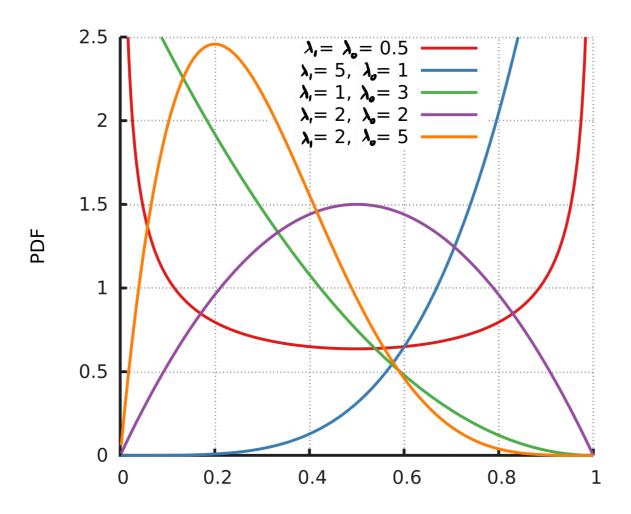
$$= \arg \max_{\theta} P(D \mid \theta)P(\theta)$$

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the Beta distribution

$$P(\theta) = \mathsf{Beta}(\lambda_1, \lambda_0) = rac{ heta^{\lambda_1 - 1} (1 - heta)^{\lambda_0 - 1}}{B(\lambda_1, \lambda_0)}$$

normalization constant

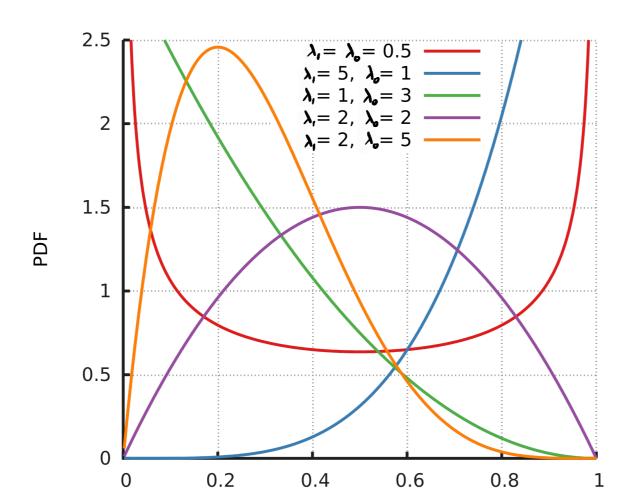


Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the Beta distribution

$$P(heta) = \mathsf{Beta}(\lambda_1, \lambda_0) = rac{ heta^{\lambda_1 - 1} (1 - heta)^{\lambda_0 - 1}}{B(\lambda_1, \lambda_0)}$$

normalization constant



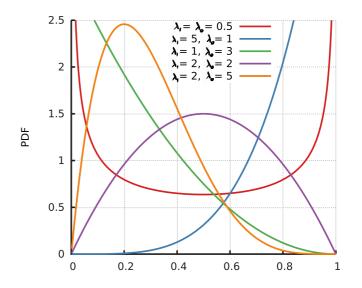
If λ_1 and λ_0 are positive integers, then

$$B(\lambda_1,\lambda_2)=rac{(\lambda_1-1)!(\lambda_0-1)!}{(\lambda_1+\lambda_0-1)!}$$

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the **Beta distribution**

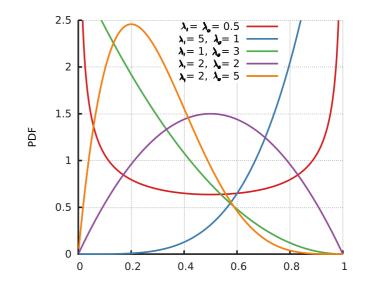
$$P(heta) = \mathsf{Beta}(\lambda_1,\lambda_0) = rac{ heta^{\lambda_1-1}(1- heta)^{\lambda_0-1}}{B(\lambda_1,\lambda_0)}$$
 by



Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the **Beta distribution**

$$P(heta) = \mathsf{Beta}(\lambda_1,\lambda_0) = rac{ heta^{\lambda_1-1}(1- heta)^{\lambda_0-1}}{B(\lambda_1,\lambda_0)}$$



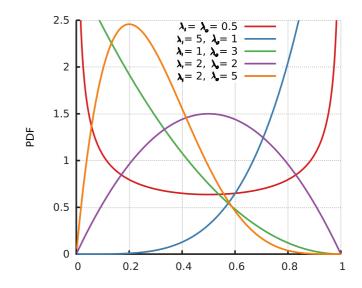
$$\hat{\theta}_{\mathsf{MAP}} = \underset{\theta \in [0,1]}{\mathsf{arg}} \max P(D \mid \theta) P(\theta) = \underset{\theta \in [0,1]}{\mathsf{arg}} \max \theta^{n_1} (1 - \theta)^{n_0} \theta^{\lambda_1 - 1} (1 - \theta)^{\lambda_0 - 1}$$

$$= \operatorname*{arg\,max}_{\theta \in [0,1]} \theta^{n_1 + \lambda_1 - 1} (1 - \theta)^{n_0 + \lambda_0 - 1}$$

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the Beta distribution

$$P(heta) = \mathsf{Beta}(\lambda_1,\lambda_0) = rac{ heta^{\lambda_1-1}(1- heta)^{\lambda_0-1}}{B(\lambda_1,\lambda_0)}$$



$$\hat{\theta}_{\mathsf{MAP}} = \argmax_{\theta \in [0,1]} P(D \mid \theta) P(\theta) = \argmax_{\theta \in [0,1]} \theta^{n_1} (1-\theta)^{n_0} \theta^{\lambda_1 - 1} (1-\theta)^{\lambda_0 - 1}$$

$$= \underset{\theta \in [0,1]}{\operatorname{arg \, max}} \, \theta^{n_1 + \lambda_1 - 1} (1 - \theta)^{n_0 + \lambda_0 - 1}$$

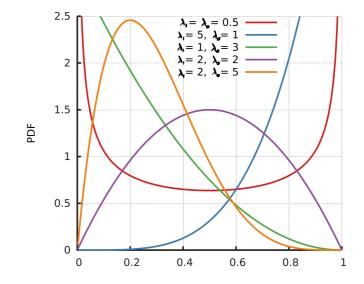
$$\tilde{n}_1 = n_1 + \lambda_1 - 1$$

$$\tilde{n}_0 = n_0 + \lambda_0 - 1$$

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the **Beta distribution**

$$P(heta) = \mathsf{Beta}(\lambda_1, \lambda_0) = rac{ heta^{\lambda_1 - 1}(1 - heta)^{\lambda_0 - 1}}{B(\lambda_1, \lambda_0)}$$



$$\hat{\theta}_{\mathsf{MAP}} = \argmax_{\theta \in [0,1]} P(D \mid \theta) P(\theta) = \argmax_{\theta \in [0,1]} \theta^{n_1} (1-\theta)^{n_0} \theta^{\lambda_1 - 1} (1-\theta)^{\lambda_0 - 1}$$

$$= \arg \max_{\theta \in [0,1]} \theta^{n_1 + \lambda_1 - 1} (1 - \theta)^{n_0 + \lambda_0 - 1} = \arg \max_{\theta \in [0,1]} \theta^{\tilde{n}_1} (1 - \theta)^{\tilde{n}_0}$$

$$\tilde{n}_1 = n_1 + \lambda_1 - 1$$

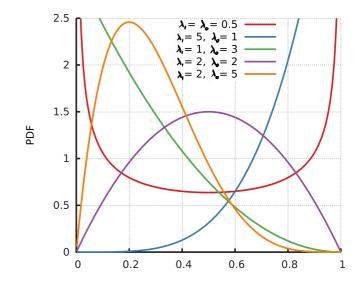
$$\tilde{n}_0 = n_0 + \lambda_0 - 1$$

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the **Beta distribution**

$$P(heta) = \mathsf{Beta}(\lambda_1, \lambda_0) = rac{ heta^{\lambda_1 - 1}(1 - heta)^{\lambda_0 - 1}}{B(\lambda_1, \lambda_0)}$$

 $\tilde{n}_0 = n_0 + \lambda_0 - 1$



$$\hat{\theta}_{\mathsf{MAP}} = \argmax_{\theta \in [0,1]} P(D \mid \theta) P(\theta) = \argmax_{\theta \in [0,1]} \theta^{n_1} (1-\theta)^{n_0} \theta^{\lambda_1 - 1} (1-\theta)^{\lambda_0 - 1}$$

$$= \argmax_{\theta \in [0,1]} \theta^{n_1 + \lambda_1 - 1} (1 - \theta)^{n_0 + \lambda_0 - 1} = \argmax_{\theta \in [0,1]} \theta^{\tilde{n}_1} (1 - \theta)^{\tilde{n}_0} = \frac{\tilde{n}_1}{\tilde{n}_1 + \tilde{n}_0}$$

Conjugate prior

Note that the form of the posterior is again a Beta distribution

When the prior and posterior distributions have the same form, the prior is known as a *conjugate prior*

Benefits of a conjugate prior:

Posterior is easy to interpret (if prior was easy to interpret)

Computationally friendly (updating is easier)

Additive smoothing

In additive smoothing, we add c imaginary positive examples and c imaginary negative examples, for parameter c>0

How should we set λ_1 and λ_0 to get additive smoothing?

$$\tilde{n}_1 = h_1 + c$$

$$\tilde{h}_{o} = n_{o} + C$$

$$\frac{1}{9} = ?$$

MAP estimation (regularized training

Just like with the MLE, we can write MAP estimation as the minimization of training error under cross-entropy loss...

... but now, we also have regularization!

Multiclass - One-hot encoding

In the multiclass case with K classes, there are two common choices of representation of the label

1) Standard representation:

$$Y \in \{1, 2, ..., K\}$$

2) One-hot encoding (also called one-of-K encoding):

$$Y \in \{0, 1\}^K$$
 with $Y_j = 1$ if label is j and $Y_j = 0$ otherwise

MLE - Extension to multinoulli distribution

Suppose we have K classes. We use parameter vector $\theta = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_K \end{pmatrix}$ satisfying $\theta_j \in [0,1]$ and $\sum_{j=1}^K \theta_j = 1$

Log likelihood for *Multinoulli* (or *categorical*) distribution

$$\log P(Y = y) = \begin{cases} \log \theta_y & \text{(standard representation)} \\ \log \prod_{j=1}^K \theta_j^{y_j} = \sum_{j=1}^K y_j \log \theta_j & \text{(one-hot encoding)} \end{cases}$$

MLE - Extension to multinoulli distribution

Suppose we have K classes. We use parameter vector $\theta = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_K \end{pmatrix}$ satisfying $\theta_j \in [0,1]$ and $\sum_{j=1}^K \theta_j = 1$

Log likelihood for *Multinoulli* (or *categorical*) distribution

$$\log P(Y = y) = \begin{cases} \log \theta_y & \text{(standard representation)} \\ \log \prod_{j=1}^K \theta_j^{y_j} = \sum_{j=1}^K y_j \log \theta_j & \text{(one-hot encoding)} \end{cases}$$

Multiclass cross-entropy loss

$$\log P(Y = y) = \begin{cases} -\log \theta_y & \text{(standard representation)} \\ \sum_{j=1}^{K} -y_j \log \theta_j & \text{(one-hot encoding)} \end{cases}$$

What is the MLE?

MLE - Extension to multinoulli distribution

Suppose we have K classes. We use parameter vector $\theta = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_K \end{pmatrix}$ satisfying $\theta_j \in [0,1]$ and $\sum_{j=1}^K \theta_j = 1$

Log likelihood for *Multinoulli* (or *categorical*) distribution

$$\log P(Y = y) = \begin{cases} \log \theta_y & \text{(standard representation)} \\ \log \prod_{j=1}^K \theta_j^{y_j} = \sum_{j=1}^K y_j \log \theta_j & \text{(one-hot encoding)} \end{cases}$$

Multiclass cross-entropy loss

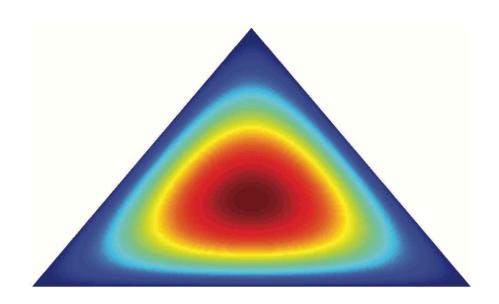
$$\log P(Y = y) = \begin{cases} -\log \theta_y & \text{(standard representation)} \\ \sum_{j=1}^{K} -y_j \log \theta_j & \text{(one-hot encoding)} \end{cases}$$

What is the MLE? $\hat{\theta}_j = \frac{n_j}{n}$ number of examples with label j

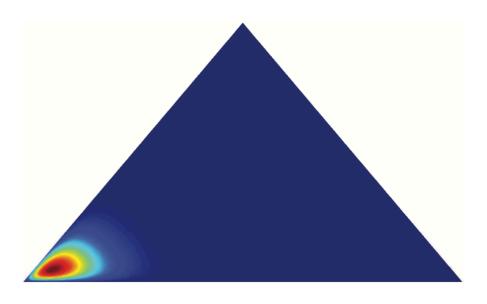
MAP - Extension to multinoulli distribution

Conjugate prior? Dirichlet distribution

•
$$P(\theta \mid \alpha) = \frac{1}{B(\alpha)} \prod_{j=1}^{K} \theta_j^{\alpha_j - 1}$$
 if θ is probability vector (zero otherwise)



$$\alpha = (2, 2, 2)$$

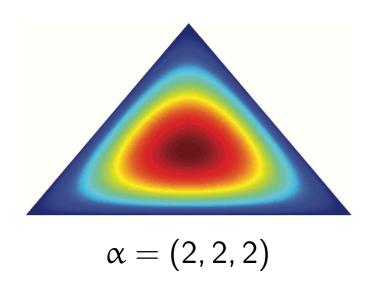


$$\alpha = (20, 2, 2)$$

MAP - Extension to multinoulli distribution

Conjugate prior? Dirichlet distribution

•
$$P(\theta \mid \alpha) = \frac{1}{B(\alpha)} \prod_{j=1}^{K} \theta_j^{\alpha_j - 1}$$
 if θ is probability vector (zero otherwise)



$$\alpha = (20, 2, 2)$$

• If we have N_j occurrences of class j, then posterior distribution is

$$P(\theta \mid D) = \frac{P(D \mid \theta)p(\theta)}{P(D)} \propto \prod_{j=1}^{K} \theta_{j}^{\alpha_{j}+n_{j}-1}$$