MAP estimation

Nishant Mehta

Lecture 16



The perils of maximum likelihood estimation
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Consider betting on two top chess players

Suppose the true probability that Kasparov wins is 8 = 0.5 (unknown to us),
so Kasparov and Karpov are evenly matched

Instead, we have observed two games. Kasparov won both games.
What is the MLE? Oy g =

S0, how much money should we bet on the next game”?



Expected cross-entropy 10ss of Ok

What is risk under cross-entropy loss when true parameteris 6 = 0.5
and our estimateis 9 =17

N

6
¢

E[/(Y,1)]| 0 =0.5]=



Intuition: Imaginary examples

Suppose we imagine that we have extra examples, one example for
each class:

ﬁ1:n1—|—1 ﬁ0:n0+1

This is called add-one smoothing, a special case of a more general
technique called additive smoothing.

Why might this be a good idea”?

What happens to the MLE when we include these imaginary examples?

0=

* add-one smoothing is also called Laplace’s rule of succession
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Prior distribution

Prior distribution P(0)

Indicates our probability of belief that 0 is the true parameter, prior to
seeing any evidence at all

Example: “probably” fair coin

p(6)
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Posterior distribution

From Bayes rule, we have
P(B | D) =

This quantity is our probability of belief 0 Is the true parameter,
a posteriori of the data.

We call 8 — P(0 | D) the posterior distribution over ©
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From Bayes rule, we have

_P(D|)P(8) _ _ P(D|6)P(6)
PO D) = P(D) Jo P(D | ©)P(6)d0

This quantity is our probability of belief that 0 is the true parameter,
a posteriori of the data.
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Maximum A Posteriorl estimate

From Bayes rule, we have

_P(D]®)P(®) ___P(D|0)P(6)
PO D)= P(D) ~ Jo P(D | 6)P(6)d®

This quantity is our probability of belief that 0 is the true parameter,
a posteriori of the data.

We call © — P(0 | D) the posterior distribution over ©

The Maximum a Posteriori estimate (MAP estimate) of 0 is

A P(D|0)P(0
Omap =argmax P(6 | D) = arg max (D ]0)P(6)
’ 0 P(D) +— ignore
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Beta prior distribution

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the Beta distribution
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Beta prior distribution

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the Beta distribution
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Beta prior distribution

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the Beta distribution

67\1—1(1 . 6)7\0—1
B(A1, Ao)

P(G) = Beta(7\1, 7\0) —

What is the MAP estimate when using a Beta prior?
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P(0) = Beta(A1, Ag) = B(A1, Ao)

What is the MAP estimate when using a Beta prior?
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Beta prior distribution

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the Beta distribution
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Beta prior distribution

Suppose the examples are drawn i.i.d. from a Bernoulli distribution

A common choice of prior distribution is the Beta distribution
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Conjugate prior

Note that the form of the posterior is again a Beta distribution

When the prior and posterior distributions have the same
form, the prior is known as a conjugate prior

Benefits of a conjugate prior:

Posterior is easy to interpret (if prior was easy to interpret)

Computationally friendly (updating is easier)



Additive smoothing

In additive smoothing, we add ¢ imaginary positive examples
and ¢ imaginary negative examples, for parameter ¢ > 0

How should we set A; and Aq to get additive smoothing”
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MAP estimation <> regularized training

Just like with the MLE, we can write MAP estimation as the
minimization of training error under cross-entropy loss...

... but now, we also have regularization!



Multiclass - One-hot encoding

INn the multiclass case with K classes, there are two common
choices of representation of the label

1) Standard representation:
Y €e{l1,2,..., K}
2) One-hot encoding (also called one-of-K encoding):

Y € {0,1}" with Y; = 1 iflabelis j and Y; = 0 otherwise



MLE - Extension to multinoulli distribution
(61

Suppose we have K classes. We use parameter vector 6 =

: 0%/
satisfying 8; €[0,1] and » 6;=1 K

j=1

Log likelihood for Multinoulli (or categorical) distribution

log 0, (standard representation)

log P(Y =y) = {

log HJK:1 Gj-/j = Zf:l yjlog®; (one-hot encoding)
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MLE - Extension to multinoulli distribution
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Suppose we have K classes. We use parameter vector 6 =

: 0%/
satisfying 8; €[0,1] and » 6;=1 K

j=1

Log likelihood for Multinoulli (or categorical) distribution

log 0, (standard representation)

log P(Y =y) = {

log HJK:1 Gj-/j = Zf:l yjlog®; (one-hot encoding)

Multiclass cross-entropy loss

—log 0, (standard representation)

log P(Y = y) = {

Zf:l —yjlog©; (one-hot encoding)

number of examples with label |

What is the MLE? 6 =

n



MAP - Extension to multinoulli distribution

® (Conjugate prior? Dirichlet distribution

® PO B( ) H g1 if O is probability vector (zero otherwise)
0¢

x=(2,2,2) o = (20,2, 2)



MAP - Extension to multinoulli distribution

® (Conjugate prior? Dirichlet distribution

K
1 1 o%g " -
® _ l I &, if © is probability vector (zero otherwise)

o =(2,2,2) o = (20,2,2)

® [f we have N; occurrences of class j, then posterior distribution is

PO | D) = (DP’(%) H g



