Neural Networks

(note: many parts of this lecture are on the whiteboard)

Nishant Mehta

Lectures /7-11

Artificial Neural Network

ALVINN

Autonomous Land Vehicle In a Neural Network

Straight

Ahead

l

30 Output

Units

()
dden

4 Hi
Un

ts

i

30x32 Sensor
Input Retina

https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

sre 4 IO - [BRI 2
womonie 21 7 o D
ot WERT\ ¥ B
EEOENEEE s P
o (NS R

CIFAR-10 dataset e e
g [HESISEREE
rog [y I M e b S N
e S RO D E R
e I e PR -
wock o) e 2 5 ol (O S

Conv. Module #1 Conv. Module #2 Classification

output: cat? (y/n)

convad maxpool convad maxpool fully fully
Input + RelLU + ReLU connected connected

https://www.cs.toronto.edu/~kriz/cifar.html

Automated speech recognition (ASR)

A history of neural network approaches for ASR

e 2012: English, model: hybrid models involving deep neural networks and
more classical approaches

e 2014: English, model: Long short-term memory networks (LSTMS)
e 2014: English, model: Recurrent neural networks (RNNSs)

e 2016: English/Mandarin, model: RNNs with Gated recurrent units (GRUS)

c

The estimated costs of training a model once

In practice, models are usually trained many times during research and development.

Carbon
Date of Energy footprint
original consumption (Ibs of Cloud compute cost
paper (kWh) CO2e) (USD)
Transformer Jun
(65M ! 27 26 $41-$140
2017
parameters)
Transformer Jun
(213M ! 201 192 $289-S981
2017
parameters)
ELMo Feb, 275 262 $433-$1,472
2018 ’
BERT (110M Oct,)
parameters) 2018 1,507 1,438 $3,751-§12,571
Transformer
(213M
parameters) Jan,)
w/ neural 2019 656,347 626,155 $942,973-$3,201,722
architecture
search
Feb,
GPT-2 2019 $12,902-S43,008

(Strubell et al., 2019)
"Energy and Policy Considerations
for Deep Learning in NLP"

https://arxiv.org/pdf/1906.02243.pdf
https://arxiv.org/pdf/1906.02243.pdf
https://arxiv.org/pdf/1906.02243.pdf

Gradient descent: main idea

Given current weights w, update using the rule:

w("eW) « w —nVE(w)

Gradient descent

Thanks to Pierre Vigier (link)

https://pvigier.github.io/2017/07/21/pychain-part1-computational-graphs.html

Gradient descent

Thanks to Pierre Vigier (link)

https://pvigier.github.io/2017/07/21/pychain-part1-computational-graphs.html

Gradient descent step size

f(x)

Gradient descent step size

f(x)

Xsmall — X0 — Olf/(X)

Gradient descent step size

f(x)

Xsmall — X0 — O]-f/(X)

{ J
X X0 Xsmall

Gradient descent step size

f(x)

Xsmall — X0 — O]-f/(X)

Xmed — X0 — O5f’(X)

{ J
X X0 Xsmall

Gradient descent step size
F(x) |

Xsmall = X0 — O]-f/(X)

Xmed — X0 — O5f’(X)

o o
X X0 Xsmall Xmed

Gradient descent step size
F(x) |

Xsmall = X0 — O]-f/(X)
Xmed — X0 — O5f’(X)

Xbig = Xo — 0.7 (x)

o o
X X0 Xsmall Xmed

Gradient descent step size
F(x) |

Xsmall = X0 — O]-f/(X)
Xmed — X0 — O5f’(X)

Xbig = Xo — 0.7 (x)

® ® ®
X X0 Xsmall Xmed Xbig

Example: linear regression with squared loss

® |n linear regression with the squared loss:

® cach w &€ Rdcorresponds to a linear hypothesis

d
b () = (w,x) = 3 wyg

® [he training error of w is

Gradient descent for linear regression

® (Gradient descent rule:

OE(w)
8w1

w(he) = w —nVE(w) =w —n

5E(W)
aWd

Gradient descent for linear regression

® (Gradient descent rule:

OE(w)
6W1

w(he) = w —nVE(w) =w —n

5E(W)
aWd

® Compute one partial derivative:

OE(w) _ J Z(y")% = Z %(y; — 0;)°

Ow; ow; 4

Gradient descent for linear regression

® (Gradient descent rule:

OE(w)
6W1

w(he) = w —nVE(w) =w —n

5E(W)
aWd

® Compute one partial derivative:

OE(w) _ J Z(y")% = Z %(y; — 0;)°

Ow; ow; 4

® ... of loss on one example:

0 , o Olyi—o0i)* doi _ '
aWJ_()/, 0;)" = dor ow (vi — oi) o,

= —(¥i — 0j)Xi;

Gradient descent for linear regression

® (Gradient descent rule:

OE(w)
6W1

w(he) = w —nVE(w) =w —n

5E(W)
aWd

® Compute one partial derivative:

O w) - i Z(YI — Oi)2 = _ 6%-()/" - o,-)2: - Z(Yi N

Ow; Owj <
® ... of loss on one example:

0 , o Olyi—o0i)* doi _ O(w, Xi)
aWJ_()/, 0;)" = or ow; (vi — oi) o,

= —(¥i — 0j)Xi;

Gradient descent for linear regression

® (Gradient descent rule:

OE(w)
8w1 n
W) = w —mVE(w) = w —n =w+n-) (vi—o)x
8E(W) i=1
8Wd

® Compute one partial derivative:

OE(w) _ 0 N (i - 0)? = _ aim(y; — 0)°= — _Z(yf — 0;)Xi,

Ow; ow; 4

® ... of loss on one example:

0 Oy; — 0;)? Do;

o(w, x;)
(v —) — :
Hw; Vi 91 do. ow,

Ow;
= —2(y; — 0i)xi,

= —2(y; — 0;)

Gradient descent training for linear regression

For each w;, initialize it to a small random value
Until termination condition met, do:
(1) Compute output o; = (w, x;) for each input vector x;

(2) Update w <+ w+n - Z i — 0j)X

=1
| |

—VE(w)

Stochastic gradient descent (SGD) for linear regression

For each wj;, initialize it to a small random value
For each example (x, y) in training set, do:
(1) Compute output o = (w, x)

(2) Update: w <+ w+1n-(y — o)x

In practice, we loop over the training set multiple times until
some termination criterion is met.

Multi-layer network without nonlinearity

o= WPWWx = Ax
for A= W@ wl

Multi-layer network with nonlinearity

Multi-layer network (with nonlinearity) (nonlinear!) decision surface

4000

0 head
a hid

+ hod

x had

¢ hawed
v heard
o heed
< hud

» who'd
~ hood

head hid * who’d hood

2000}
F2 (Hz)

1000

S00

0o 500 1000 1400

Sigmoid unit

Sigmoid function

Sigmoid unit

Assume we used squared loss:

1
Sigmoid function E(w) = S(y - 0)°

1
o(a) = 14 e—2

How to compute gradient?
OE(w)

Wj

We need to compute

Use chain rule:

OE(w) _ OE(w) do Oa

w; o da Ow;

Sigmoid unit

Assume we used squared loss:

1
Sigmoid function E(w) = S(y - 0)°

1
o(a) = 14 e—2

How to compute gradient?
OE(w)

Wj

We need to compute

Use chain rule:

JE(w) _ 9E(w) o da

w; 0, da Ow;
0o
=—(y — o) 0, Y

Sigmoid unit

Sigmoid function

1
o(a) = 1+ e 2

Assume we used squared loss:

E(w) = 5(y — o)

How to compute gradient?
OE(w)

Wj

We need to compute

Use chain rule:
OE(w) B OE(w) @ Oa
wi o0 Da Ow;

do
=—(y — o) 0, Y

— = o(a)(1 — o(a)) = o(1 — o)

Sigmoid unit

Sigmoid function

1
o(a) = 1+ e 2

Assume we used squared loss:

E(w) = 5(y — o)

How to compute gradient?
OE(w)

Wj

We need to compute

Use chain rule:
OE(w) B OE(w) @ Oa
wi o0 Da Ow;

do
=—(y — o) 0, Y

7

do Oo(a) _
da Oda o(a)(1 - o(a)) = o(1 - o)
So OE(w) _ —(y —0)o(1 - o)x;

Wj

Stochastic gradient descent (SGD) for “sigmoid” regression

For each w;, Initialize it to a small random value
For each example (x, y) in training set, do:

(1) Compute preactivation a = (w, x)

(2) Compute output o = o(a)

(3) Update: w <+ w +n(y —o)o(1l — o)x

In practice, we loop over the training set multiple times until
some termination criterion is met.

Forward propagation

Unit computations
(in reverse order)

o(x) = o(a®(x))
a@(x) = (W, h(x)) =3 w?h(x)

hi(x) = o(a}”(x))
3 (x) = (), x) = Z Wj,i Xi

(Note the following vector definitions)

— W WD W)

kg

2 2
W(z):(Wl() 2() Wdl))

Backpropagation - weights to output layer

o First, we compute the gradient updates
@ for the weights going to the output layer:
|

OE(w) OE(w) 0o 9a?
8WJ-(2) ~_ do 03 @vvj(z)

\

-~

5
= —(y —0)o(1 — o) h;

\ J/
-~

o

We are using the squared error:

E(w) = 5(y — o(x))

Recall the sigmoid function:

1
vial) = 14 e—2

Backpropagation - weights to hidden layer

o Next, we compute the gradient updates
@ for the weights going to the hidden layer:
|

OE(w)
aW(l)

Jii

 9E(w) do 92 on; 0aV

Do 0ad oh; 53 5,W
J Il

_ 5049 ohy da"

~ 0h; 92V gw
J Ji

Backpropagation - weights to hidden layer

Next, we compute the gradient updates
for the weights going to the hidden layer:

OE(w)
aW(l)

Jii

 9E(w) do 92 on; 0aV

Do 0ad oh; 53 5,W
J Il

_ 5049 ohy da"

~ 0h; 92V gw
J Ji

Backpropagation - weights to hidden layer

Next, we compute the gradient updates
for the weights going to the hidden layer:

OE(w)
@
ow’
 9E(w) do 9a® oh; 0a)"

Do 0a? 0h; (M) aw_(l_)
J Il

@) Oh; 03"

—2 R
Wi Oa (1) 8W(1)

Backpropagation - weights to hidden layer

Next, we compute the gradient updates
for the weights going to the hidden layer:

OE(w)
ow'H

Jii

 9E(w) do 92 on; 0aV

Do 0ad oh; 53 5,W
J Il

1
) Oh; Da)

J aaj(_l) 8Wj(})
- oh,
a3(1) hj(l _ hJ)

Backpropagation - weights to hidden layer

Next, we compute the gradient updates
for the weights going to the hidden layer:

OE(w)
@
ow’
 9E(w) do 9a® oh; 0a)"

Do 0a? Oh; 83(.1) aw_(l_)
J,I

Oa (1)
= 5w hi(1— hy)

Ow (1)

Backpropagation - weights to hidden layer

Next, we compute the gradient updates
for the weights going to the hidden layer:

OE(w)
o
ow’
 9E(w) do 92 on; 0aV

Do 0a? Oh; 83(.1) aW_(l_)
J,I

) Oa (1)
= dw; h(l_h)8 (1)
........ Ei—
0a; .
ow' |

Backpropagation - weights to hidden layer

Next, we compute the gradient updates
for the weights going to the hidden layer:

OE(w)
ow'H

Jii

 9E(w) do 92 on; 0a)V

do 0al® oh; g5 9,M
j jii

= 5w 7 hi(1 — hj)x;

How to use backprop to train neural networks

(1) Initialization: use random initialization (this is important!)

randomness is important to:

e to avoid problematic (all zero) gradients
* preak symmetry (think about why)

(2) Loop over training examples repeatedly (use SGD)

(i) forward propagation
(i) backprop

(3) Stop (there are different choices of stopping criteria)

Universal Approximation Theorem

Any bounded, continuous function over the input space [0, 1]°
can be approximated arbitrarily well (i.e. with arbitrarily small
error) using a neural network with only one hidden layer

(with a number of hidden nodes depending on the function).

The hidden units have sigmoid activation functions, while the
output unit is linear (no activation function).

(Cybenko, 1989)

error

0.5

0.4

0.3

0.2

0.1

Early Stopping

Training error —
Validation error —

Number of epochs

Classical view of learning

Double descent curve

Double descent

Risk

Risk

under-fitting over-fitting

. Test risk

N

~ ‘Training risk
sweet spot_ .+ —

S
Capacity of

R —

under-parameterized

Test risk

“classical”
regime

~ [Training risk:

over-parameterized

“modern”
interpolating regime

- _ . _interpolation threshold

—

Capgcity of H

Double descent

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
N N .
\

05 | : Critical — Test
— ' . .
o . Regime Train
t [
w 0.4 V\
k= \ | —
(O 0-3] \\.‘ ! S—— -
— \ I
— N Interpolation
0.2 o Threshold
0 \ !
)
— 0.1 \

I\\\\
0079 10 20 30 40 50 60

ResNetl8 width parameter

More reading: https://windowsontheory.org/2019/12/05/deep-double-descent

https://windowsontheory.org/2019/12/05/deep-double-descent

| 2-Regularization (“Weight decay”)

For a network with an input layer and L additional layers (including the output layer)

Weights matrix feeding into layer |

/

1L =
Ew) =3 >0 —)+ 5 > |IW?
=1 (=11 !

/ dﬁ—l dg

' ¢ : (£)42
Frobenius norm of W9, defined as Z Z(Wij)

i=1 j=1

Why is this helpful?
Tends to shrink the weights (spreads them out more)
There is theoretical support; this is a form of “capacity control”

L1-Regularization

For a network with an input layer and L additional layers (including the output layer)

1 n L dE—l dg
)) ~ /
E(w) =5 > (=0 +A> > | wf
1= /=1 i=1 j=1

Why is this helpful?
Tends to shrink the weights and make many of them zero (a thinner network)
There is even stronger theoretical support for this (again, capacity control)

For valid generalization, the size of the
weights is more important than the size
of the network

Peter L. Bartlett
Department of Systems Engineering
Research School of Information Sciences and Engineering
Australian National University
Canberra, 0200 Australia
Peter.Bartlett@anu.edu.au

Abstract

This paper shows that if a large neural network is used for a pattern
classification problem, and the learning algorithm finds a network
with small weights that has small squared error on the training
patterns, then the generalization performance depends on the size
of the weights rather than the number of weights. More specifi-
cally, consider an £-layer feed-forward network of sigmoid units, in
which the sum of the magnitudes of the weights associated with
each unit is bounded by A. The misclassification probability con-
verges to an error estimate (that is closely related to squared error
on the training set) at rate O((cA)““*1)/2,/(logn)/m) ignoring
log factors, where m is the number of training patterns, n is the
input dimension, and c is a constant. This may explain the gen-
eralization performance of neural networks, particularly when the
number of training examples is considerably smaller than the num-
ber of weights. It also supports heuristics (such as weight decay
and early stopping) that attempt to keep the weights small during
training.

[Neural Information Processing Systems, 1996]

(Srivastava et al., 2014)

“Dropout: A Simple Way to
rO p O u Prevent Neural Networks

from Overfitting”

During training
® |n each iteration/update step, train a “thinned” version of the network:

® “Thinning” means we randomly, independently drop out (remove) each
node (along with all its incoming and outgoing edges) with probability p

® Do forward and backpropagation on the thinned network

‘.
> Ny
{)
"
A>

(s
&
3
X
\

..
:’;
(W
XX
XX
(>

A
A
@5,

K
.4
\ /

7
%
Vs
‘\Q‘\/:

O
N
\\

0
X)
)

K

Q

%
XD
2‘5
X
I\
[/

X
K

q
L/

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Dropout

® Suppose that the original network has m nodes and each
node Is independently dropped with probabillity p

® How many possible thinned networks are there”

Dropout

® Suppose that the original network has m nodes and each
node Is independently dropped with probabillity p

® How many possible thinned networks are there”? 2™

Dropout

® Suppose that the original network has m nodes and each
node Is independently dropped with probabillity p

® How many possible thinned networks are there”? 2™

® [his is equivalent to drawing the thinned network from a set
of 2™ thinned networks (a binary choice for each node)

® [he number of nodes In a thinned network follows a
binomial distribution with success probability p

(Srivastava et al., 2014)

“Dropout: A Simple Way to
rO p O u Prevent Neural Networks

from Overfitting”

At test time

® Use the original network, but scale each weight by 1 - p. Why 1 - p? (its
expected value)

Dropout reduces overfitting!
Mathy intuition:

® Dropout is like training with
Input noise

Classification Error %

With dropout

® [orces network to be robust to
perturbations

® Network responds by

spreading out its weight (better 0 20000 a0000 G000 80000 1000000
not rely on any node or
connection too much!) Figure 4: Test error for different architectures

with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

ML Hipster
Spider ANN spider ANN
Autoencoded deep spider ANN
Trains on images any size
Classify them as good as eyes
Drop out!
Backprop that spider ANN

QP0C80C 9O

l ’ Q: How many machine learners does it take to change a lightbulb?
‘ A: Isn't that a database thing?

O N 62 QO 56

. . ML Hipster @ML_Hipster - 5 Apr 2014
! ’ This ML algorithm is rated R. It contains: Strong Assumptions, Frequent

Sampling, and Matrix Inversions. Restricted to masochistic users.

O 1 T 79 Q o7

The simplest explanation is that when Occam tried to grow a beard it looked like
crap.

! . ML Hipster @\VIL_Hipster - 30 Mar 2014 v

O 1 T 89 Q 83

https://twitter.com/ml_hipster?lang=en

