Dying Experts: Efficient Algorithms with Optimal Regret Bounds

Problem Setup

Standard Decision-Theoretic Online Learning For round t = 1, 2, ...

1 Learner plays a probability vector p_t over K experts

2 Nature reveals a loss vector ℓ_t

3 Learner suffers $\hat{\ell}_t = \boldsymbol{p}_t \cdot \boldsymbol{\ell}_t = \sum_{i=1}^K p_{i,t} \ \ell_{i,t}$

The classic notion of regret:

 $R_E(1,T) = \sum_{t=1}^{T} \hat{\ell}_t - \min_{i \in [K]} \sum_{t=1}^{I} \ell_{i,t}$

The set of experts can be changing \rightarrow studied as Sleeping Experts/Specialists

The adversary chooses availability set A_t at each round as well

Using classic notion of regret (R_E) is not reasonable anymore

Ranking Regret

Define π to be an ordering over the set of initial experts $E = \{e_1, e_2, \ldots, e_K\}$

For example: $\pi_i = (e_3, e_1, e_2)$

Let Π be the set of all possible orderings of E

Denote by $\sigma^t(\pi)$ the first alive expert of ordering π in round t

$$R_{\Pi}(1,T) = \sum_{t=1}^{T} \hat{\ell}_t - \min_{\pi \in \Pi} \sum_{t=1}^{T} \ell_{\sigma^t(\pi),t}$$

Previous Results on Sleeping Experts

- Fully-Adversarial setting
- Recall that regret of Hedge is $\mathcal{O}(\sqrt{T \log K})$
- Strategy in Kleinberg et. al. (2010) is to create all K!orderings, we get $\mathcal{O}(\sqrt{TK \log K})$ with respect to ranking regret
- They also prove $\Omega(\sqrt{TK \log K})$
- Kanade and Steinke (2014) showed existence of a no-regret efficient algorithm for the sleeping experts setting implies the existence of an efficient algorithm for the problem of PAC learning DNFs

Hamid Shayestehmanesh, Sajjad Azami and Nishant Mehta

Dying Experts

- We are interested in a more restricted version of sleeping experts
- Motivated by disqualification or expiration of experts (e.g. fairness)
- The experts can only go to sleep (never wake up)

Can we get better results (regret/computation) in the seemingly easier case we are interested in?

Summary of Our Results Question Answer Can we improve $\mathcal{O}(\sqrt{TK \log K})$? No Matching lower bound? Yes Ok, how about efficiency? Yes Question: what information can help improve regret? \rightarrow Order of dying Question (Known order of dying) Answer Can we improve the upper bound? Yes Matching lower bound? Yes Yes Efficiency?

Lower bound (Unknown Order)

Theorem: When the order of dying is unknown, the regret of any algorithm is $\Omega(\sqrt{mT \log K})$.

Proof Sketch

- Partition the T rounds into m+1 days of equal length
- Each day is a game decoupled from the previous ones (goal: no prior info for algorithm)
- The days are split into two halves
- First half: $\ell_{i,t} \sim Bernouli(1/2)$
- The best expert of the first half suffers no loss on the second half, the others will suffer $1 - \ell_{i,t}$
- We show $R_{\Pi}(1,T) = \sum_{s=1}^{m+1} R_{E_a(s)}(\tau_s)$
- Using DTOL minimax regret, we get:

Classic regret of this day $= R_{E_a(1)}(au_1)$

Efficient Algorithm (Unknown Order) $c_{i,1} = 1$, $h_{i,1} = (K-1)!$, $E_a = \{e_1, e_2, \dots e_K\}$ for t = 1, 2, ..., T do play $p_{i,t} = \mathbf{1} \left[e_i \in E_a \right] \left(\frac{h_{i,t} \cdot c_{i,t}}{\sum_{j=1}^k h_{j,t} \cdot c_{j,t}} \right)$ receive $(\ell_{1,t},\ldots,\ell_{K,t})$ for $e_i \in E_a$ do $c_{i,t+1} = c_{i,t} \cdot e^{-\eta \ell_{i,t}}$ $h_{i,t+1} = h_{i,t}$ if expert j dies then $E_a = E_a \setminus \{e_j\}$ for $e_i \in E_a$ do $|h_{i,t+1} = h_{i,t+1} \cdot c_{i,t+1} + (h_{j,t+1} \cdot c_{j,t+1})/|E_a|$ $c_{i,t+1} = 1$

The algorithm for the case of known order of dying is slightly different

We show that the algorithms simulate hedge over Π (for unknown order) and \mathcal{E} (for known order)

Upper Bound (Unknown Order)

Strategy: Resetting-Hedge: run Hedge over the set of initial experts E and, after each night, reset the algorithm

Theorem: Resetting-Hedge strategy enjoys a regret of $R_{\Pi}(1,T) = \mathcal{O}(\sqrt{mT\log K}).$

Note: resetting can be wasteful in practice

Running on K! orderings on the other hand is inefficient \rightarrow We propose an efficient implementation of Hedge over K! orderings

Number of Effective Experts

- Assumption (for simplicity): the experts die in order, e_1 dies first, e_2 second, . . .
- Behavior of π is a sequence of predictions $(\sigma^1(\pi),\sigma^2(\pi),\ldots,\sigma^T(\pi))$
- π and π' behave the same if they use the same initial experts in *every* round.
- Set of effective orderings $\mathcal{E} \subseteq \Pi$: for each unique behavior of orderings, there only exists one ordering in \mathcal{E} .

Theorem: The number of effective orderings in Π is $f(\{d_1, d_2, \dots, d_m\}, A) = A \cdot \prod_{s=1}^m (d_s + 1).$

• d_i is the number of experts that die on i^{th} night

- If no expert dies, then $f(\{\}, A) = A$
- The maximum number of effective experts is $2^{m}(K-m)$

Bounds in Known Order

Strategy: Create effective orderings and run Hedge on them

Note: we only have $2^m(K-m)$ experts (orderings) instead of K!

Theorem: For the case of known order of dying, the strategy as described above achieves a regret of $\mathcal{O}(\sqrt{T(m + \log K)}).$

We have a matching lower bound:

Theorem: When Learner knows the order of dying, the minimax regret is $\Omega(\sqrt{mT})$.

Beyond Adaptivity to m

We show how Follow the Leader(FTL) algorithm can be implemented efficient while maintaining the loss of best permutation expert

Using FTL, we discuss how to set the learning rate in HPU/HPK to recover AdaHedge

Eventually, by combining AdaHedge and FTL, we implement FlipFlop to have an algorithm which does well in both adversarial and stochastic setting.

Corollary: HPU and HPK simulate FlipFlop over set of experts A (where $A = \Pi$ for HPU and $A = \mathcal{E}$ for HPK) and achieve regret

 $R_A(1,T) < \min\left\{C_2\sqrt{\frac{L_T^*(T-L_T^*)}{T}}\ln\left(|A|\right)\right\}$ $C_0 R_A^{\text{ftl}}(1,T) + C_1, +C_3 \ln(|A|) \bigg\},$

where C_0, C_1, C_2, C_3 are constants.