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Problem Setup
Standard Decision-Theoretic Online Learning
For round t = 1, 2, . . .
1 Learner plays a probability vector pt over K experts

2 Nature reveals a loss vector `t
3 Learner suffers ˆ̀

t = pt · `t = ∑K
i=1 pi,t `i,t

The classic notion of regret:

RE(1, T ) =
T∑
t=1

ˆ̀
t − min

i∈[K]

T∑
t=1
`i,t

The set of experts can be changing
−→ studied as Sleeping Experts/Specialists

The adversary chooses availability set At at each round
as well

Using classic notion of regret (RE) is not reasonable any-
more

Ranking Regret
Define π to be an ordering over the set of initial experts
E = {e1, e2, . . . , eK}
For example: πi = (e3, e1, e2)
Let Π be the set of all possible orderings of E
Denote by σt(π) the first alive expert of ordering π in
round t

RΠ(1, T ) =
T∑
t=1

ˆ̀
t −min

π∈Π

T∑
t=1
`σt(π),t

Previous Results on Sleeping Experts
•Fully-Adversarial setting
•Recall that regret of Hedge is O(

√
T logK)

•Strategy in Kleinberg et. al. (2010) is to create all K!
orderings, we get O(

√
TK logK) with respect to

ranking regret
•They also prove Ω(

√
TK logK)

•Kanade and Steinke (2014) showed existence of a
no-regret efficient algorithm for the sleeping experts
setting implies the existence of an efficient algorithm
for the problem of PAC learning DNFs

Dying Experts
•We are interested in a more restricted version of
sleeping experts
•Motivated by disqualification or expiration of experts
(e.g. fairness)
•The experts can only go to sleep (never wake up)

Can we get better results (regret/computation) in the
seemingly easier case we are interested in?

Summary of Our Results
Question Answer
Can we improve O(

√
TK logK)? No

Matching lower bound? Yes
Ok, how about efficiency? Yes

Question: what information can help improve regret?
−→Order of dying

Question (Known order of dying) Answer
Can we improve the upper bound? Yes
Matching lower bound? Yes
Efficiency? Yes

Lower bound (Unknown Order)
Theorem: When the order of dying is unknown, the regret
of any algorithm is Ω(

√
mT logK).

Proof Sketch
•Partition the T rounds into m+ 1 days of equal length
•Each day is a game decoupled from the previous ones
(goal: no prior info for algorithm)
•The days are split into two halves
•First half: `i,t ∼ Bernouli(1/2)
•The best expert of the first half suffers no loss on the
second half, the others will suffer 1− `j,t
•We show RΠ(1, T ) = ∑m+1

s=1 REa(s) (τs)
•Using DTOL minimax regret, we get:

RΠ(1, T ) =
m+1∑
s=1

√√√√T
2

(m + 1) log(K − s)

= Ω
(√
Tm logK

)

Effective Orderings
Note that not all K! orderings are needed anymore
Number of effective orderings reduces from 6 (3!) to 2
(2!) after e2 dies

Efficient Algorithm (Unknown Order)
ci,1 = 1, hi,1 = (K − 1)!, Ea = {e1, e2, . . . eK}
for t = 1, 2, . . . T do
play pi,t = 1 [ei ∈ Ea]

(
hi,t·ci,t∑k
j=1 hj,t·cj,t

)
receive (`1,t, . . . , `K,t)
for ei ∈ Ea do
ci,t+1 = ci,t · e−η`i,t
hi,t+1 = hi,t
if expert j dies then
Ea = Ea \ {ej}
for ei ∈ Ea do
hi,t+1 = hi,t+1 · ci,t+1 + (hj,t+1 · cj,t+1)/|Ea|
ci,t+1 = 1

The algorithm for the case of known order of dying is
slightly different
We show that the algorithms simulate hedge over Π (for
unknown order) and E (for known order)

Upper Bound (Unknown Order)
Strategy: Resetting-Hedge: run Hedge over the set of
initial experts E and, after each night, reset the algorithm

Theorem: Resetting-Hedge strategy enjoys a regret of
RΠ(1, T ) = O(

√
mT logK).

Note: resetting can be wasteful in practice
Running on K! orderings on the other hand is inefficient
−→We propose an efficient implementation of Hedge over
K! orderings

Number of Effective Experts

•Assumption (for simplicity): the experts die in order,
e1 dies first, e2 second, . . .
•Behavior of π is a sequence of predictions

(σ1(π), σ2(π), . . . , σT (π))
•π and π′ behave the same if they use the same initial
experts in every round.
•Set of effective orderings E ⊆ Π: for each unique
behavior of orderings, there only exists one ordering in
E .

Theorem: The number of effective orderings in Π is
f ({d1, d2, . . . , dm}, A) = A · ∏ms=1(ds + 1).

•di is the number of experts that die on ith night
• If no expert dies, then f ({}, A) = A

•The maximum number of effective experts is
2m(K −m)

Bounds in Known Order
Strategy: Create effective orderings and run Hedge on
them
Note: we only have 2m(K −m) experts (orderings) in-
stead of K!
Theorem: For the case of known order of dying,
the strategy as described above achieves a regret of
O
(√
T (m + logK)

)
.

We have a matching lower bound:
Theorem: When Learner knows the order of dying, the
minimax regret is Ω(

√
mT ).

Beyond Adaptivity to m
We show how Follow the Leader(FTL) algorithm can be
implemented efficient while maintaining the loss of best
permutation expert
Using FTL, we discuss how to set the learning rate in
HPU/HPK to recover AdaHedge
Eventually, by combining AdaHedge and FTL, we imple-
ment FlipFlop to have an algorithm which does well in
both adversarial and stochastic setting.
Corollary: HPU and HPK simulate FlipFlop over set of
experts A (where A = Π for HPU and A = E for HPK)
and achieve regret

RA(1, T ) < min
{
C2

√√√√L∗T (T − L∗T )
T

ln (|A|)

C0R
ftl
A (1, T ) + C1,+C3 ln (|A|)

}
,

where C0, C1, C2, C3 are constants.


