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Decision-theoretic Online Learning (DTOL)

For round t = 1, 2, . . .

1 Nature presents a sample xt
2 Learner plays a probability vector pt over K experts
3 Nature reveals a loss vector `t
4 Learner suffers ˆ̀

t = pt · `t =
∑K

i=1 pi ,t`i ,t

The classic notion of regret:

RE (1,T ) =
T∑
t=1

ˆ̀
t − min

i∈[K ]

T∑
t=1

`i ,t
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Sleeping Experts

What if the set of experts is changing?

“Specialists” framework proposed by Blum (1997) and followed by
Freund et al. (1997)

Sleeping Experts Framework:
For round t = 1, 2, . . .

1 Nature presents a sample xt and availability set E t
a

2 Learner plays a probability vector pt over K experts
3 Nature reveals a loss vector `t
4 Learner suffers ˆ̀

t = pt · `t =
∑K

i=1 pi ,t`i ,t
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Regret Notion

Observe: using classic notion of regret (RE ) is not reasonable anymore

Some possible notions:

- (Per-action Regret) Sum only over the rounds in which the best action is
available

- (Policy Regret) Compete with the best policy

- (Ranking Regret) Compete with the best ranking of experts
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Ranking Regret

Define π to be an ordering over the set of initial experts E

For example: πi = (e3, e1, e2)

Let Π be the set of all possible orderings of E

Denote by σt(π) the first alive expert of ordering π in round t

RΠ(1,T ) =
T∑
t=1

ˆ̀
t −min

π∈Π

T∑
t=1

`σt(π),t .
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Previous Results on Sleeping Experts

Availability set (E t
a ) can be chosen adversarial or stochastic

As usual, losses can be adversarial or stochastic

We are interested in Fully-Adversarial setting

Recall that regret of Hedge is O(
√
T logK )

Applying Kleinberg et al. (2010), we get O(
√
KT logK ) with respect

to ranking regret (create all K ! orderings)

They also prove Ω(
√
KT logK )

Hardness results

Can we get better results (regret/computation) in the easier case we are
interested in?
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Dying Expert

We are interested in a more restricted version of sleeping experts

Motivated by disqualification or expiration of experts (e.g. fairness)

The experts can only go to sleep (never wake up)

Observe: Not all the K ! orderings are needed anymore

π1 = (e1, e2, e3) π2 = (e2, e1, e3) π3 = (e2, e3, e1)

π4 = (e1, e3, e2) π5 = (e3, e1, e2) π6 = (e3, e2, e1)

Table: After e2 dies
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π4 = (e1, e3, e2) π5 = (e3, e1, e2) π6 = (e3, e2, e1)

Table: After e2 dies

number of effective orderings reduced from 6 to 4

Shayestehmanesh, Azami, Mehta Dying Experts October 25, 2019 9 / 31



Summary of Our Results

Can we take advantage of this pattern to get better results?

Question Our Response

Can we improve O(
√
TK logK )? No

Matching lower bound? Yes
Ok, how about efficiency? Yes

What information can help improving regret? Order of dying

Question (Known order of dying) Our Response

Can we improve the upper bound? Yes: O(
√
TK )

Matching lower bound? Yes
Efficiency? Yes

+ some more results in Section 5.3 of the paper (will not be discussed in
this presentation)
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Lower bound (Unknown Order)

Let m be the number of experts that are going to die

Theorem (Unknown Order Lower Bound)

When the order of dying is unknown, the regret of any algorithm is
Ω(
√
mT logK ).

Shayestehmanesh, Azami, Mehta Dying Experts October 25, 2019 12 / 31



Lower bound (Unknown Order) Proof

Proof Sketch

partition the T rounds into m + 1 days of equal length

each day is a game decoupled from the previous ones (goal: no prior
info for alg)

The days are split into two halves

first half: `i ,t ∼ Bernouli(1/2)

best expert of the first half suffers no loss on the second half, the
others will suffer 1− `j ,t
implies RΠ(1,T ) =

∑m+1
s=1 REa(s) (τs)

using DTOL minimax regret, we get:

RΠ(1,T ) =
m+1∑
s=1

√
T/2(m + 1) log(K − s) = Ω

(√
Tm logK

)
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Upper bound (Unknown Order)

Resetting-Hedge: run Hedge over the set of initial experts E and, after
each night, reset the algorithm

Theorem (Unknown Order Upper Bound)

Resetting-Hedge strategy enjoys a regret of RΠ(1,T ) = O(
√
mT logK ).

Resetting can be wasteful in practice

Running on K ! orderings on the other hand is inefficient

We will propose an algorithm to implement it efficiently (to be
discussed later)
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Lower bound (Known Order)

Theorem (Known Order Lower Bound)

When Learner knows the order of dying, the minimax regret is Ω(
√
mT ).

Proof Sketch

partition all the rounds to m/2 days of equal length

On day s: all experts suffer full loss except for e2s−1 and e2s , who will
suffer i.i.d. Bernouli(1/2)

e2s−1 and e2s die at the end of day s

similar to the unknown case’s proof, we have

RΠ(1,T ) ≥
m/2∑
s=1

1

L
min{

√
T ′/2 log 2,T ′} =

m/2∑
s=1

√
T/m = Ω

(√
mT

)
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Upper bound (Known Order)

Strategy: create only the effective experts and run Hedge on them.

Note: we only have 2m(K −m) experts (orderings) instead of K !

Theorem (Known Order Upper Bound)

For the case of known order of dying, the strategy as described above
achieves a regret of O

(√
T (m + logK )

)
.
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Number of Effective Experts

Assumption (for simplicity): the experts die in order, e1 dies first, e2

second, . . .

Behavior of π is a sequence of predictions (σ1(π), σ2(π), . . . , σT (π))

π and π′ behave the same if they use the same initial experts in every
round.

Set of effective orderings E ⊆ Π: for each unique behavior of orderings,
there only exists one ordering in E .
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Number of Effective Experts

Theorem (Number of Effective Experts)

In the dying experts setting, for K initial experts and m nights, the number
of effective orderings in Π is f ({d1, d2, . . . dm},A) = A ·

∏m
s=1(ds + 1).

di is the number of experts that die on i th night

If no expert dies, i.e. f ({},A) = A

The maximum number of effective experts is 2m(K −m)
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Illustration
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Number of Effective Experts - Proof

Induction on number of nights, m

Base: f ({},A) = A

Hypothesis: f ({d2, . . . di},A) = A
∏i

s=2 (ds + 1), Denote this set of
effective permutations by Ei−1

Step: Any effective permutation π where σ1(π) = ei , one of the
experts that dies at first night, will look like (ei , π

′) where π′ ∈ Ei−1

This will create d1 set of effective permutation of size Ei−1. Summing
these d1 new sets with Ei−1 give us Ei of size (d1 + 1)|Ei−1|
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Example

π1 = (e4, e2, e3) π2 = (e2, e4, e3) π3 = (e2, e3, e4)

π4 = (e4, e3, e2) π5 = (e3, e4, e2) π6 = (e3, e2, e4)

Table: All permutations with e2, e3, e4, red permutations are effective

π1 = (e1, e4, e2, e3) π2 = (e1, e2, e4, e3) π3 = (e1, e2, e3, e4)

π4 = (e1, e4, e3, e2) π5 = (e1, e3, e4, e2) π6 = (e1, e3, e2, e4)

Table: All permutations with e1, e2, e3, e4 that start with e1, red permutations are
effective
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Review: Hedge

1 Set some η > 0 and wj ,0 = 1 for j = 1, 2, . . . ,K

For t = 1, 2, . . . ,T

2 Set:
pj ,t =

wj ,t−1∑K
j=1 wj ,t−1

for j ∈ [1,K ]

3 Observe loss vector `t

4 Suffer loss pt · `t
5 Set wj ,t = wj ,t−1e

−η`j,t for j ∈ [1,K ]
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HPU

Algorithm 1: Hedge-Perm-Unknown (HPU)

ci ,1 := 1, hi ,1 := (K − 1)!, Ea := {e1, e2, . . . eK}
for t = 1, 2, . . . T do

play pi ,t := 1 [ei ∈ Ea]

(
hi,t ·ci,t∑k
j=1 hj,t ·cj,t

)
receive (`1,t , . . . , `K ,t)
for ei ∈ Ea do

ci ,t+1 := ci ,t · e−η`i,t
hi ,t+1 := hi ,t

if expert j dies then
Ea := Ea \ {ej}
for ei ∈ Ea do

hi ,t+1 := hi ,t+1 · ci ,t+1 + (hj ,t+1 · cj ,t+1)/|Ea|
ci ,t+1 := 1
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Why HPU works?

Theorem (Hedge Perm Same as Hedge)

At every round, HPK simulates running Hedge on the set of experts E .

1 When σt(π) = σt(π′)

2 No need to know w t
π and w t

π′

3 Use w t
π + w t

π′ instead for the weight of that prediction

4 Let η be the learning rate and Ltπ be the cumulative loss of ordering π
up until round t

5 The algorithm maintains W (Πt
j ) =

∑
π∈Πt

j
e−ηL

t−1
π
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Proof Sketch

Group the orderings with similar predictions in one group

π1 = (e3, e1, e2) π2 = (e1, e3, e2) π3 = (e1, e2, e3)

π4 = (e3, e2, e1) π5 = (e2, e3, e1) π6 = (e2, e1, e3)

Table: All permutations with e1, e2, e3, all alive

π1 = (e3, e1, e2) π2 = (e1, e3, e2) π3 = (e1, e2, e3)

π4 = (e3, e2, e1) π5 = (e2, e3, e1) π6 = (e2, e1, e3)

Table: All permutations with e1, e2, e3, after e1 dies

Then, if expert ej dies, every ordering in the group associated with ej
will be moved to another group and the empty group will be deleted

Orderings will distribute to other groups symmetrically after a death

Shayestehmanesh, Azami, Mehta Dying Experts October 25, 2019 28 / 31



Proof Sketch

Group the orderings with similar predictions in one group

π1 = (e3, e1, e2) π2 = (e1, e3, e2) π3 = (e1, e2, e3)

π4 = (e3, e2, e1) π5 = (e2, e3, e1) π6 = (e2, e1, e3)

Table: All permutations with e1, e2, e3, all alive

π1 = (e3, e1, e2) π2 = (e1, e3, e2) π3 = (e1, e2, e3)

π4 = (e3, e2, e1) π5 = (e2, e3, e1) π6 = (e2, e1, e3)

Table: All permutations with e1, e2, e3, after e1 dies

Then, if expert ej dies, every ordering in the group associated with ej
will be moved to another group and the empty group will be deleted

Orderings will distribute to other groups symmetrically after a death

Shayestehmanesh, Azami, Mehta Dying Experts October 25, 2019 28 / 31



Proof Sketch

Group the orderings with similar predictions in one group

π1 = (e3, e1, e2) π2 = (e1, e3, e2) π3 = (e1, e2, e3)

π4 = (e3, e2, e1) π5 = (e2, e3, e1) π6 = (e2, e1, e3)

Table: All permutations with e1, e2, e3, all alive

π1 = (e3, e1, e2) π2 = (e1, e3, e2) π3 = (e1, e2, e3)

π4 = (e3, e2, e1) π5 = (e2, e3, e1) π6 = (e2, e1, e3)

Table: All permutations with e1, e2, e3, after e1 dies

Then, if expert ej dies, every ordering in the group associated with ej
will be moved to another group and the empty group will be deleted

Orderings will distribute to other groups symmetrically after a death

Shayestehmanesh, Azami, Mehta Dying Experts October 25, 2019 28 / 31



HPK

Algorithm 2: Hedge-Perm-Known (HPK)

ci ,1 := 1, hi ,1 := d2K−i−1e, Ea := {e1, e2, . . . eK}
for t = 1, 2, . . . T do

play pi ,t := 1 [ei ∈ Ea]

(
hi,t ·ci,t∑k
j=1 hj,t ·cj,t

)
receive (`1,t , . . . , `K ,t)
for each ei ∈ Ea do

ci ,t+1 := ci ,t · e−η`i,t
hi ,t+1 := hi ,t

if expert j dies then
Ea := Ea \ {ej}
for each i = j + 1 to K do

hi ,t+1 := hi ,t+1 · ci ,t+1 + (hj ,t+1 · cj ,t+1) ( d2
i−2e

2K−1−j )

ci ,t+1 := 1
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Conclusion and Discussion

We presented matching upper and lower ranking regret bounds for
both the cases of known and unknown order of dying

Achieving sublinear regret efficiently in the general sleeping experts
problem is as hard as PAC learning DNF

we provided efficient algorithms with optimal regret bounds for both
cases in dying experts

Open Question: What will happen in the bandits case?

Open Question: Is there any motivated setting in between unknown
and known order?
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