Dying Experts: Efficient Algorithms with Optimal Regret Bounds

Hamid Shayestehmanesh, Sajjad Azami, Nishant Mehta

Department of Computer Science University of Victoria Victoria, BC, Canada

33rd Conference on Neural Information Processing Systems (NeurIPS 2019) Vancouver, Canada

1 Problem Setup and Motivation

- 2 Bounds for Unknown Order of Dying
- Bounds for Known Order of Dying
- 4 Effective Number of Experts
- 5 Efficient Algorithms for Dying Experts

1 Problem Setup and Motivation

- 2 Bounds for Unknown Order of Dying
- Bounds for Known Order of Dying
- 4 Effective Number of Experts
- 5 Efficient Algorithms for Dying Experts

Decision-theoretic Online Learning (DTOL)

For round $t = 1, 2, \ldots$

- Nature presents a sample x_t
- Learner plays a probability vector p_t over K experts
- **③** Nature reveals a loss vector ℓ_t
- Learner suffers $\hat{\ell}_t = \boldsymbol{p}_t \cdot \boldsymbol{\ell}_t = \sum_{i=1}^{K} p_{i,t} \ell_{i,t}$

Decision-theoretic Online Learning (DTOL)

For round $t = 1, 2, \ldots$

- Nature presents a sample x_t
- Learner plays a probability vector p_t over K experts
- **3** Nature reveals a loss vector ℓ_t
- Learner suffers $\hat{\ell}_t = \boldsymbol{p}_t \cdot \boldsymbol{\ell}_t = \sum_{i=1}^{K} p_{i,t} \ell_{i,t}$

The classic notion of regret:

$$R_{E}(1, T) = \sum_{t=1}^{T} \hat{\ell}_{t} - \min_{i \in [K]} \sum_{t=1}^{T} \ell_{i,t}$$

• What if the set of experts is changing?

э

Image: A matrix

- What if the set of experts is changing?
- "Specialists" framework proposed by Blum (1997) and followed by Freund et al. (1997)

- What if the set of experts is changing?
- "Specialists" framework proposed by Blum (1997) and followed by Freund et al. (1997)
- Sleeping Experts Framework:

For round $t = 1, 2, \ldots$

- Nature presents a sample x_t and availability set E^t_a
- 2 Learner plays a probability vector p_t over K experts
- **③** Nature reveals a loss vector ℓ_t
- Learner suffers $\hat{\ell}_t = \boldsymbol{p}_t \cdot \boldsymbol{\ell}_t = \sum_{i=1}^{K} p_{i,t} \ell_{i,t}$

- Observe: using classic notion of regret (R_E) is not reasonable anymore
- Some possible notions:

- (*Per-action Regret*) Sum only over the rounds in which the best action is available

- Observe: using classic notion of regret (R_E) is not reasonable anymore
- Some possible notions:
- (Per-action Regret) Sum only over the rounds in which the best action is available
- (Policy Regret) Compete with the best policy

- Observe: using classic notion of regret (R_E) is not reasonable anymore
- Some possible notions:
- (*Per-action Regret*) Sum only over the rounds in which the best action is available
- (Policy Regret) Compete with the best policy

- (Ranking Regret) Compete with the best ranking of experts

Image: A matrix

For example: $\pi_i = (e_3, e_1, e_2)$

< 4[™] >

For example: $\pi_i = (e_3, e_1, e_2)$

Let Π be the set of all possible orderings of E

For example: $\pi_i = (e_3, e_1, e_2)$

Let Π be the set of all possible orderings of E

Denote by $\sigma^t(\pi)$ the first alive expert of ordering π in round t

For example: $\pi_i = (e_3, e_1, e_2)$

Let Π be the set of all possible orderings of E

Denote by $\sigma^t(\pi)$ the first alive expert of ordering π in round t

$$\mathcal{R}_{\Pi}(1,T) = \sum_{t=1}^{T} \hat{\ell}_t - \min_{\pi \in \Pi} \sum_{t=1}^{T} \ell_{\sigma^t(\pi),t} \; .$$

• Availability set (E_a^t) can be chosen adversarial or stochastic

- Availability set (E_a^t) can be chosen adversarial or stochastic
- As usual, losses can be adversarial or stochastic

- Availability set (E_a^t) can be chosen adversarial or stochastic
- As usual, losses can be adversarial or stochastic
- We are interested in Fully-Adversarial setting

- Availability set (E_a^t) can be chosen adversarial or stochastic
- As usual, losses can be adversarial or stochastic
- We are interested in Fully-Adversarial setting
- Recall that regret of Hedge is $\mathcal{O}(\sqrt{T \log K})$

- Availability set (E_a^t) can be chosen adversarial or stochastic
- As usual, losses can be adversarial or stochastic
- We are interested in Fully-Adversarial setting
- Recall that regret of Hedge is $\mathcal{O}(\sqrt{T \log K})$
- Applying Kleinberg et al. (2010), we get O(√KT log K) with respect to ranking regret (create all K! orderings)

- Availability set (E_a^t) can be chosen adversarial or stochastic
- As usual, losses can be adversarial or stochastic
- We are interested in Fully-Adversarial setting
- Recall that regret of Hedge is $\mathcal{O}(\sqrt{T \log K})$
- Applying Kleinberg et al. (2010), we get O(√KT log K) with respect to ranking regret (create all K! orderings)
- They also prove $\Omega(\sqrt{KT \log K})$

- Availability set (E_a^t) can be chosen adversarial or stochastic
- As usual, losses can be adversarial or stochastic
- We are interested in Fully-Adversarial setting
- Recall that regret of Hedge is $\mathcal{O}(\sqrt{T \log K})$
- Applying Kleinberg et al. (2010), we get O(√KT log K) with respect to ranking regret (create all K! orderings)
- They also prove $\Omega(\sqrt{KT \log K})$
- Hardness results

- Availability set (E_a^t) can be chosen adversarial or stochastic
- As usual, losses can be adversarial or stochastic
- We are interested in Fully-Adversarial setting
- Recall that regret of Hedge is $\mathcal{O}(\sqrt{T \log K})$
- Applying Kleinberg et al. (2010), we get O(√KT log K) with respect to ranking regret (create all K! orderings)
- They also prove $\Omega(\sqrt{KT \log K})$
- Hardness results

Can we get better results (regret/computation) in the easier case we are interested in?

• We are interested in a more restricted version of sleeping experts

Image: A matrix and a matrix

- We are interested in a more restricted version of sleeping experts
- Motivated by disqualification or expiration of experts (e.g. fairness)

- We are interested in a more restricted version of sleeping experts
- Motivated by disqualification or expiration of experts (e.g. fairness)
- The experts can only go to sleep (never wake up)

- We are interested in a more restricted version of sleeping experts
- Motivated by disqualification or expiration of experts (e.g. fairness)
- The experts can only go to sleep (never wake up)
- Observe: Not all the K! orderings are needed anymore

- We are interested in a more restricted version of sleeping experts
- Motivated by disqualification or expiration of experts (e.g. fairness)
- The experts can only go to sleep (never wake up)
- Observe: Not all the K! orderings are needed anymore

$\pi_1 = (e_1, e_2, e_3)$	$\pi_2 = (e_2, e_1, e_3)$	$\pi_3 = (e_2, e_3, e_1)$
$\pi_4 = (e_1, e_3, e_2)$	$\pi_5 = (e_3, e_1, e_2)$	$\pi_6 = (e_3, e_2, e_1)$

Table: After e_2 dies

- We are interested in a more restricted version of sleeping experts
- Motivated by disqualification or expiration of experts (e.g. fairness)
- The experts can only go to sleep (never wake up)
- Observe: Not all the K! orderings are needed anymore

$$\begin{array}{l} \pi_1 = (e_1, e_2, e_3) & \pi_2 = (e_2, e_1, e_3) & \pi_3 = (e_2, e_3, e_1) \\ \pi_4 = (e_1, e_3, e_2) & \pi_5 = (e_3, e_1, e_2) & \pi_6 = (e_3, e_2, e_1) \end{array}$$

Table: After e₂ dies

number of effective orderings reduced from 6 to 4

Summary of Our Results

Can we take advantage of this pattern to get better results?

Question	Our Response
Can we improve $\mathcal{O}(\sqrt{TK \log K})$?	No

Question	Our Response
Can we improve $\mathcal{O}(\sqrt{TK \log K})$?	No
Matching lower bound?	Yes

Image: A matrix

Question	Our Response
Can we improve $\mathcal{O}(\sqrt{TK \log K})$?	No
Matching lower bound?	Yes
Ok, how about efficiency?	Yes

Image: Image:

Question	Our Response
Can we improve $\mathcal{O}(\sqrt{TK \log K})$?	No
Matching lower bound?	Yes
Ok, how about efficiency?	Yes

What information can help improving regret?

Question	Our Response
Can we improve $\mathcal{O}(\sqrt{TK \log K})$?	No
Matching lower bound?	Yes
Ok, how about efficiency?	Yes

What information can help improving regret? Order of dying

Question (Known order of dying)	Our Response
Can we improve the upper bound?	Yes: $\mathcal{O}(\sqrt{TK})$

Image: A matrix and a matrix
Can we take advantage of this pattern to get better results?

Question	Our Response
Can we improve $\mathcal{O}(\sqrt{TK \log K})$?	No
Matching lower bound?	Yes
Ok, how about efficiency?	Yes

What information can help improving regret? Order of dying

Question (Known order of dying)	Our Response
Can we improve the upper bound?	Yes: $\mathcal{O}(\sqrt{TK})$
Matching lower bound?	Yes

Image: Image:

Can we take advantage of this pattern to get better results?

Question	Our Response
Can we improve $\mathcal{O}(\sqrt{TK \log K})$?	No
Matching lower bound?	Yes
Ok, how about efficiency?	Yes

What information can help improving regret? Order of dying

Question (Known order of dying)	Our Response
Can we improve the upper bound?	Yes: $\mathcal{O}(\sqrt{TK})$
Matching lower bound?	Yes
Efficiency?	Yes

Image: A matrix and a matrix

Can we take advantage of this pattern to get better results?

Question	Our Response
Can we improve $\mathcal{O}(\sqrt{TK \log K})$?	No
Matching lower bound?	Yes
Ok, how about efficiency?	Yes

What information can help improving regret? Order of dying

Question (Known order of dying)	Our Response
Can we improve the upper bound?	Yes: $\mathcal{O}(\sqrt{TK})$
Matching lower bound?	Yes
Efficiency?	Yes

+ some more results in Section 5.3 of the paper (will not be discussed in this presentation)

Problem Setup and Motivation

- 2 Bounds for Unknown Order of Dying
 - 3 Bounds for Known Order of Dying
- 4 Effective Number of Experts
- 5 Efficient Algorithms for Dying Experts

Let m be the number of experts that are going to die

Theorem (Unknown Order Lower Bound)

When the order of dying is unknown, the regret of any algorithm is $\Omega(\sqrt{mT \log K})$.

Proof Sketch

• partition the T rounds into m+1 days of equal length

- partition the T rounds into m+1 days of equal length
- each day is a game decoupled from the previous ones (goal: no prior info for alg)

- partition the T rounds into m+1 days of equal length
- each day is a game decoupled from the previous ones (goal: no prior info for alg)
- The days are split into two halves

- partition the T rounds into m+1 days of equal length
- each day is a game decoupled from the previous ones (goal: no prior info for alg)
- The days are split into two halves
- first half: $\ell_{i,t} \sim Bernouli(1/2)$

- partition the T rounds into m+1 days of equal length
- each day is a game decoupled from the previous ones (goal: no prior info for alg)
- The days are split into two halves
- first half: $\ell_{i,t} \sim Bernouli(1/2)$
- best expert of the first half suffers no loss on the second half, the others will suffer $1-\ell_{j,t}$

- partition the T rounds into m+1 days of equal length
- each day is a game decoupled from the previous ones (goal: no prior info for alg)
- The days are split into two halves
- first half: $\ell_{i,t} \sim Bernouli(1/2)$
- best expert of the first half suffers no loss on the second half, the others will suffer $1 \ell_{j,t}$
- implies $R_{\Pi}(1, T) = \sum_{s=1}^{m+1} R_{E_a(s)}(\tau_s)$

- partition the T rounds into m+1 days of equal length
- each day is a game decoupled from the previous ones (goal: no prior info for alg)
- The days are split into two halves
- first half: $\ell_{i,t} \sim Bernouli(1/2)$
- best expert of the first half suffers no loss on the second half, the others will suffer $1-\ell_{j,t}$
- implies $R_{\Pi}(1,T) = \sum_{s=1}^{m+1} R_{E_a(s)}(\tau_s)$
- using DTOL minimax regret, we get:

$$R_{\Pi}(1,T) = \sum_{s=1}^{m+1} \sqrt{T/2(m+1)\log(K-s)} = \Omega\left(\sqrt{Tm\log K}\right) \square$$

Theorem (Unknown Order Upper Bound)

Resetting-Hedge strategy enjoys a regret of $R_{\Pi}(1, T) = \mathcal{O}(\sqrt{mT \log K})$.

Theorem (Unknown Order Upper Bound)

Resetting-Hedge strategy enjoys a regret of $R_{\Pi}(1, T) = \mathcal{O}(\sqrt{mT \log K})$.

• Resetting can be wasteful in practice

Theorem (Unknown Order Upper Bound)

Resetting-Hedge strategy enjoys a regret of $R_{\Pi}(1, T) = \mathcal{O}(\sqrt{mT \log K})$.

- Resetting can be wasteful in practice
- Running on K! orderings on the other hand is inefficient

Theorem (Unknown Order Upper Bound)

Resetting-Hedge strategy enjoys a regret of $R_{\Pi}(1, T) = \mathcal{O}(\sqrt{mT \log K})$.

- Resetting can be wasteful in practice
- Running on K! orderings on the other hand is inefficient
- We will propose an algorithm to implement it efficiently (to be discussed later)

Problem Setup and Motivation

2 Bounds for Unknown Order of Dying

Bounds for Known Order of Dying

- 4 Effective Number of Experts
- 5 Efficient Algorithms for Dying Experts

When Learner knows the order of dying, the minimax regret is $\Omega(\sqrt{mT})$.

When Learner knows the order of dying, the minimax regret is $\Omega(\sqrt{mT})$.

Proof Sketch

• partition all the rounds to m/2 days of equal length

When Learner knows the order of dying, the minimax regret is $\Omega(\sqrt{mT})$.

- partition all the rounds to m/2 days of equal length
- On day s: all experts suffer full loss except for e_{2s-1} and e_{2s}, who will suffer i.i.d. Bernouli(1/2)

When Learner knows the order of dying, the minimax regret is $\Omega(\sqrt{mT})$.

- partition all the rounds to m/2 days of equal length
- On day s: all experts suffer full loss except for e_{2s-1} and e_{2s}, who will suffer i.i.d. Bernouli(1/2)
- e_{2s-1} and e_{2s} die at the end of day s

When Learner knows the order of dying, the minimax regret is $\Omega(\sqrt{mT})$.

- partition all the rounds to m/2 days of equal length
- On day s: all experts suffer full loss except for e_{2s-1} and e_{2s}, who will suffer i.i.d. Bernouli(1/2)
- e_{2s-1} and e_{2s} die at the end of day s
- similar to the unknown case's proof, we have

$$R_{\Pi}(1,T) \ge \sum_{s=1}^{m/2} \frac{1}{L} \min\{\sqrt{T'/2\log 2}, T'\} = \sum_{s=1}^{m/2} \sqrt{T/m} = \Omega\left(\sqrt{mT}\right)$$

Strategy: create only the effective experts and run Hedge on them.

Note: we only have $2^m(K - m)$ experts (orderings) instead of K!

Strategy: create only the effective experts and run Hedge on them.

Note: we only have $2^m(K - m)$ experts (orderings) instead of K!

Theorem (Known Order Upper Bound)

For the case of known order of dying, the strategy as described above achieves a regret of $\mathcal{O}(\sqrt{T(m + \log K)})$.

Problem Setup and Motivation

- 2 Bounds for Unknown Order of Dying
- Bounds for Known Order of Dying
- 4 Effective Number of Experts
- 5 Efficient Algorithms for Dying Experts

Assumption (for simplicity): the experts die in order, e_1 dies first, e_2 second, . . .

э

Assumption (for simplicity): the experts die in order, e_1 dies first, e_2 second, . . .

Behavior of π is a sequence of predictions $(\sigma^1(\pi), \sigma^2(\pi), \dots, \sigma^T(\pi))$

 π and π' behave the same if they use the same initial experts in every round.

Assumption (for simplicity): the experts die in order, e_1 dies first, e_2 second, . . .

Behavior of π is a sequence of predictions $(\sigma^1(\pi), \sigma^2(\pi), \dots, \sigma^T(\pi))$

 π and π' behave the same if they use the same initial experts in every round.

Set of effective orderings $\mathcal{E} \subseteq \Pi$: for each unique behavior of orderings, there only exists one ordering in \mathcal{E} .

Theorem (Number of Effective Experts)

In the dying experts setting, for K initial experts and m nights, the number of effective orderings in Π is $f(\{d_1, d_2, \dots, d_m\}, A) = A \cdot \prod_{s=1}^{m} (d_s + 1)$.

- *d_i* is the number of experts that die on *ith* night
- If no expert dies, i.e. $f({}, A) = A$
- The maximum number of effective experts is $2^m(K-m)$

æ

- Induction on number of nights, m
- Base: $f(\{\}, A) = A$
- Hypothesis: f ({d₂,...d_i}, A) = A ∏ⁱ_{s=2} (d_s + 1), Denote this set of effective permutations by E_{i-1}
- Step: Any effective permutation π where σ₁(π) = e_i, one of the experts that dies at first night, will look like (e_i, π') where π' ∈ E_{i-1}. This will create d₁ set of effective permutation of size E_{i-1}. Summing these d₁ new sets with E_{i-1} give us E_i of size (d₁ + 1)|E_{i-1}|

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline \pi_1 = (e_4, e_2, e_3) & \pi_2 = (e_2, e_4, e_3) & \pi_3 = (e_2, e_3, e_4) \\ \hline \pi_4 = (e_4, e_3, e_2) & \pi_5 = (e_3, e_4, e_2) & \pi_6 = (e_3, e_2, e_4) \end{array}$$

Table: All permutations with e_2, e_3, e_4 , red permutations are effective

$$\begin{array}{l} \pi_1 = (e_1, e_4, e_2, e_3) & \pi_2 = (e_1, e_2, e_4, e_3) & \pi_3 = (e_1, e_2, e_3, e_4) \\ \pi_4 = (e_1, e_4, e_3, e_2) & \pi_5 = (e_1, e_3, e_4, e_2) & \pi_6 = (e_1, e_3, e_2, e_4) \end{array}$$

Table: All permutations with e_1, e_2, e_3, e_4 that start with e_1 , red permutations are effective

Problem Setup and Motivation

- 2 Bounds for Unknown Order of Dying
- Bounds for Known Order of Dying
- 4 Effective Number of Experts
- 5 Efficient Algorithms for Dying Experts

• Set some
$$\eta > 0$$
 and $w_{j,0} = 1$ for $j = 1, 2, \dots, K$

For
$$t = 1, 2, ..., T$$

Set:
 $p_{j,t} = \frac{w_{j,t-1}}{\sum_{j=1}^{K} w_{j,t-1}}$

for $j \in [1, K]$

- 3 Observe loss vector ℓ_t
- Suffer loss $\boldsymbol{p}_t \cdot \boldsymbol{\ell}_t$

• Set
$$w_{j,t} = w_{j,t-1}e^{-\eta\ell_{j,t}}$$
 for $j \in [1, K]$

< 4 → <

æ

HPU

Algorithm 1: Hedge-Perm-Unknown (HPU) $c_{i,1} := 1, h_{i,1} := (K - 1)!, E_a := \{e_1, e_2, \dots, e_K\}$ for t = 1, 2, ..., T do play $p_{i,t} := 1 [e_i \in E_a] \left(\frac{h_{i,t} \cdot c_{i,t}}{\sum_{i=1}^k h_{i,t} \cdot c_{i,t}} \right)$ receive $(\ell_{1,t},\ldots,\ell_{K,t})$ for $e_i \in E_2$ do $c_{i,t+1} := c_{i,t} \cdot e^{-\eta \ell_{i,t}}$ $h_{i,t+1} := h_{i,t}$ if expert *j* dies then $E_a := E_a \setminus \{e_i\}$ for $e_i \in E_2$ do $h_{i,t+1} := h_{i,t+1} \cdot c_{i,t+1} + (h_{i,t+1} \cdot c_{i,t+1})/|E_a|$ $c_{i,t+1} := 1$
Theorem (Hedge Perm Same as Hedge)

At every round, HPK simulates running Hedge on the set of experts \mathcal{E} .

- **1** When $\sigma^t(\pi) = \sigma^t(\pi')$
- 2 No need to know w_{π}^{t} and $w_{\pi'}^{t}$

Theorem (Hedge Perm Same as Hedge)

At every round, HPK simulates running Hedge on the set of experts \mathcal{E} .

- **1** When $\sigma^t(\pi) = \sigma^t(\pi')$
- 2 No need to know w_{π}^{t} and $w_{\pi'}^{t}$
- **3** Use $w_{\pi}^{t} + w_{\pi'}^{t}$ instead for the weight of that prediction

Theorem (Hedge Perm Same as Hedge)

At every round, HPK simulates running Hedge on the set of experts \mathcal{E} .

- **1** When $\sigma^t(\pi) = \sigma^t(\pi')$
- 2 No need to know w_{π}^{t} and $w_{\pi'}^{t}$
- **③** Use $w_{\pi}^{t} + w_{\pi'}^{t}$ instead for the weight of that prediction
- **③** Let η be the learning rate and L_{π}^{t} be the cumulative loss of ordering π up until round t
- **5** The algorithm maintains $W(\Pi_j^t) = \sum_{\pi \in \Pi_j^t} e^{-\eta L_{\pi}^{t-1}}$

• Group the orderings with similar predictions in one group

$\pi_1 = (e_3, e_1, e_2)$	$\pi_2 = (e_1, e_3, e_2)$	$\pi_3 = (e_1, e_2, e_3)$
$\pi_4 = (e_3, e_2, e_1)$	$\pi_5 = (e_2, e_3, e_1)$	$\pi_6 = (e_2, e_1, e_3)$

Table: All permutations with e_1, e_2, e_3 , all alive

$$\begin{array}{ll} \pi_1 = (e_3, e_1, e_2) & \pi_2 = (e_1, e_3, e_2) & \pi_3 = (e_1, e_2, e_3) \\ \pi_4 = (e_3, e_2, e_1) & \pi_5 = (e_2, e_3, e_1) & \pi_6 = (e_2, e_1, e_3) \end{array}$$

Table: All permutations with e_1, e_2, e_3 , after e_1 dies

• Group the orderings with similar predictions in one group

$\pi_1 = (e_3, e_1, e_2)$	$\pi_2 = (e_1, e_3, e_2)$	$\pi_3 = (e_1, e_2, e_3)$
$\pi_4 = (e_3, e_2, e_1)$	$\pi_5 = (e_2, e_3, e_1)$	$\pi_6 = (e_2, e_1, e_3)$

Table: All permutations with e_1, e_2, e_3 , all alive

$$\begin{array}{ll} \pi_1 = (e_3, e_1, e_2) & \pi_2 = (e_1, e_3, e_2) & \pi_3 = (e_1, e_2, e_3) \\ \pi_4 = (e_3, e_2, e_1) & \pi_5 = (e_2, e_3, e_1) & \pi_6 = (e_2, e_1, e_3) \end{array}$$

Table: All permutations with e_1, e_2, e_3 , after e_1 dies

• Then, if expert e_j dies, every ordering in the group associated with e_j will be moved to another group and the empty group will be deleted

• Group the orderings with similar predictions in one group

$\pi_1 = (e_3, e_1, e_2)$	$\pi_2 = (e_1, e_3, e_2)$	$\pi_3 = (e_1, e_2, e_3)$
$\pi_4 = (e_3, e_2, e_1)$	$\pi_5 = (e_2, e_3, e_1)$	$\pi_6 = (e_2, e_1, e_3)$

Table: All permutations with e_1, e_2, e_3 , all alive

$$\begin{array}{ll} \pi_1 = (e_3, e_1, e_2) & \pi_2 = (e_1, e_3, e_2) & \pi_3 = (e_1, e_2, e_3) \\ \pi_4 = (e_3, e_2, e_1) & \pi_5 = (e_2, e_3, e_1) & \pi_6 = (e_2, e_1, e_3) \end{array}$$

Table: All permutations with e_1, e_2, e_3 , after e_1 dies

- Then, if expert e_j dies, every ordering in the group associated with e_j will be moved to another group and the empty group will be deleted
- Orderings will distribute to other groups symmetrically after a death

HPK

Algorithm 2: Hedge-Perm-Known (HPK) $c_{i,1} := 1, h_{i,1} := [2^{K-i-1}], E_a := \{e_1, e_2, \dots, e_K\}$ for t = 1, 2, ..., T do play $p_{i,t} := 1 \left[e_i \in E_a \right] \left(\frac{h_{i,t} \cdot c_{i,t}}{\sum_{i=1}^k h_{i,t} \cdot c_{i,t}} \right)$ receive $(\ell_{1,t},\ldots,\ell_{K,t})$ for each $e_i \in E_a$ do $c_{i,t+1} := c_{i,t} \cdot e^{-\eta \ell_{i,t}}$ $h_{i,t+1} := h_{i,t}$ if *expert j dies* then $E_a := E_a \setminus \{e_i\}$ for each i = i + 1 to K do $h_{i,t+1} := h_{i,t+1} \cdot c_{i,t+1} + (h_{j,t+1} \cdot c_{j,t+1}) \left(\frac{\lceil 2^{t-2} \rceil}{2^{K-1-i}} \right)$ $c_{i,t+1} := 1$

• We presented matching upper and lower ranking regret bounds for both the cases of known and unknown order of dying

- We presented matching upper and lower ranking regret bounds for both the cases of known and unknown order of dying
- Achieving sublinear regret efficiently in the general sleeping experts problem is as hard as PAC learning DNF

- We presented matching upper and lower ranking regret bounds for both the cases of known and unknown order of dying
- Achieving sublinear regret efficiently in the general sleeping experts problem is as hard as PAC learning DNF
- we provided efficient algorithms with optimal regret bounds for both cases in dying experts

- We presented matching upper and lower ranking regret bounds for both the cases of known and unknown order of dying
- Achieving sublinear regret efficiently in the general sleeping experts problem is as hard as PAC learning DNF
- we provided efficient algorithms with optimal regret bounds for both cases in dying experts
- Open Question: What will happen in the bandits case?

- We presented matching upper and lower ranking regret bounds for both the cases of known and unknown order of dying
- Achieving sublinear regret efficiently in the general sleeping experts problem is as hard as PAC learning DNF
- we provided efficient algorithms with optimal regret bounds for both cases in dying experts
- Open Question: What will happen in the bandits case?
- Open Question: Is there any motivated setting in between unknown and known order?

- Avrim Blum. Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain. *Machine Learning*, 26(1):5–23, 1997.
- Yoav Freund, Robert E Schapire, Yoram Singer, and Manfred K Warmuth. Using and combining predictors that specialize. In *In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing*. Citeseer, 1997.
- Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Regret bounds for sleeping experts and bandits. *Machine learning*, 80 (2-3):245–272, 2010.