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A forecasting game

You (Mechanism) want to sequentially forecast various global events
Mechanism is clueless about the events but has access to N experts

Each expert:
e has fixed beliefs about the events

e Delieves all events are independent and does not update its beliefs over time

Fort=1,2,..., T AT

Each expert j € [N] selects a forecast (report) ri+ € [0, 1] and reveals its report Cp,

N,
Mechanism draws expert I; ~ p,, pays it a fixed sum of money () , and selects report r;. ,
p St ty

Nature reveals outcome y; € {0, 1} and Mechanism suffers loss ¢(ry, ¢, yt)
W ,
l‘«"’\i\/v/‘\(y\

Mechanism updates by setting p:+1 expert |

Forecaster’s goal: Obtain low belief regret «—— regret against best expert in hindsight when considering experts’ beliefs
T T

Zé(rlt,t,yt) — min Zé(bj,t,yt)

=0
r—1 JelN




Belief Regret and [ruthfulness

T

-
Belief Regret:  » (1, ¢, ye) — min > U(bje ye)
t=1 ’ —

Exactly truthful mechanisms
® [he best thing for an expert to do is to report her belief

® [Xxpert has no reason to spend resources on finding the best way to misreport (lie),
SO More resources are available to obtain better beliefs. This is good.

® C(lassic regret becomes identical to belief regret, so it suffices to bound classical regret

Throughout, we will assume the loss function is strictly proper

For all beliefs b € [0, 1] and r € [0, 1] with r # b,

EyNBernoulli(b) [K(b, )/)] < EyNBernoulli(b) [f(r, )/)]

So truthful reporting strictly minimizes the expected loss according to the subjective belief



An Expert’s Incentive

Myopic expert

® selects report to maximize probability of being selected in the next round Pr(/;11 = i)

Non-myopic expert

T+1
® selects report to maximize sum of probabilities of being selected in all future rounds  » ~ Pr(ls = i)

Oq s=t+1

® selects report to maximize probability of being selected at the end of the game Pr(/r1 = i)



What rates are known for expected belief regret”

Myopic

Exact Truthfulness

Approximate Truthfulness

Exact Truthfulness

Weighted-Score Update

V T log N —  /TlogN
(Freeman, Pennock, Podimata,
Wortman Vaughan, 2021)
S-Prod
VTN — VTN

(Zimmert and Marinov, 2024)

Non-myopic

Approximate Truthfulness

Exponentially Weighted
Average Forecaster

v/ Tlog N

(Frongillo, Gomez,
Thilagar, Waggoner, 2021)
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Belief Structure

® tach expert maintains a joint distribution over the outcomes and other experts’ reports in all rounds

® \\e assume Belief Independence - the joint distribution factorizes over rounds

Expert i's belief structure

Note: strong assumption!




Online Incentive Compatibility under Belief Independence

We say an online mechanism is online incentive compatible under belief independence if
e [or all experts 1 with respective beliefs satisfying belief independence
® For any round t, any history ri.+—_1, y1-+—1, any future round (for selection) T'

® For any report sequence r; ;.71 that disagrees with b; +.7/_1 in at least one round

it holds that
i i I .
P =i | reee1,yiee1) > PAO(I =i | vt yie1)
expert i selects beliefs b ¢ 7/ _1 expert i selects reports f; +7/—1
iNn rounds t through T INn rounds t through T
\ON
eC\.\O
qund 10! 0
1ar0e

Fixed history Subjective expectation /
|
I




Elven magic

One-shot game (Witkowski, Freeman, Wortman Vaughan, Pennock, Krause, 2018, 2023)

® Suppose all experts simultaneously provide forecasts for all events (one round game)

® Seclect one expert and give it a single cash prize

® (Goal: have experts report truthfully while maximizing probability of selecting most accurate expert
(expert whose internal beliefs give the lowest cumulative loss according to a proper loss)

Event-Lotteries Forecaster (ELF) ORI, . .

® [or each event, run a lottery, assigning a “happy point” to a single expert

1 1
Pr(\/\/j,t — ) — N 1 — g(ly,t,yt) | N1 Zf(rk,t,yt)
=y

® Give the prize to the expert with the most happy DOoINtS

Winner = arg max Z Wi L
JEINT 44




Our Algorithm: FPL-ELF

Main Idea of FPL-ELF

Fort=1,2,..., T:

To determine [, run ELF using losses from rounds 1 through t — 1
and use forecast of selected expert

with a small but important modification to ELF

This approach was called “ELF-X” by Freeman, Pennock, Podimata, Wortman Vaughan (2020)

What we actually do: swap out ELF with “Simple ELF”

 Simple ELF is ELF but with a per-event lottery that
Is simpler and has other important modifications




Modifying the lottery

Original ELF: probability of getting a happy point Simple ELF: probability of getting a sad point
1 1 1 /1 1
N (1 — U(fj e, ye) N1 Zg(rk,t1Yt)) » N (5 + Zg(rj,tv)/t)>
KZ]
Properties: Properties:
® Variance of W; , ranges from 0 to = ® Variance of W is always O (+)
® cxactly one expert gets a point ® at most one expert gets a point

® points are good (happy points) ® points are bad (sad points)



FPL-ELF

Fort=1,2, ..., T:

t—1
Select I, = arg min Z Wi, s

JEIN] =4

Observe losses for round t
Fors=1,2,..., t:
Draw candidate C; ~ Uniform([N])

Set Wi s =0 forj # G

1 1
Draw VVj,S ~ Bernoulli (5 -+ ZKJ,_g) fOI’J — CS

FPL-ELF is online incentive compatible under belief independence




FPL-ELF

Fort=1,2,..., T : Connection to Follow the Perturbed Leader

Select /; = arg min Z Wi ¢ ﬂelection rule is equivalent to \

t—1
l; = arg min Z (4N - W; s — 2)

Observe losses for round t

Fors=1,2..... t: JEINT o= \M
Draw candidate C; ~ Uniform([N]) perturbed loss /;
Set W:. =0 forj #£ C T
J, J 7& v [éj,s} — gj,s

1 1
Draw VV_/',S ~ Bernoulli (5 -+ ZKJ,_g) fOI’J — CS

Selection rule can be expressed as

l; —argmmZ@S—l—ZXJs

JEIN] =

\\for perturbations X; J

FPL-ELF is online incentive compatible under belief independence




FPL-SELF (Stabilized/Static ELF)

Fort=12 ..., T: Connection to Follow the Perturbed Leader
Select I = arg min Z Wi.s ﬂelection rule is equivalent to \
: t—1
Observe losses for round t for regret analysis, .
not necessary to redraw anything I = arg min Z (4N - W;s —2)

JEIN] =1 e
N

perturbed loss /;

Draw candidate C; ~ Uniform([N])

1 1
Draw VVj,t ~ Bernoulli (5 + Zgjt)

Selection rule can be expressed as

[, = argmmZ@s + ZXJS
FPL-ELF is online incentive compatible under belief independence JEIN] s

\\for perturbations X; J




Analyzing the regret

1 1

Draw each perturbation X; s uniformly from {

t—1

In round t, select expert /; = arg min Z bis+ Z Xj.s
JE[N]

s=1 s=1

-
Key Lemma: Expected Regret < 2% Pr(le1 # ;) + E [max ) X;.

t=1
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e To control the probability of switching, Jad

® | eadPack; (Lead Pack in round t) is set of experts that potentially can “take the lead” in round t + 1
(total perturbed loss within 2 of perturbed leader’s total perturbed loss)
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1 1
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T T
Key Lemma: Expected Regret < 2y Pr(lep1 # ) + E|max Y Xi:| < 2 Pr(|LeadPack, >1) + O T log N
P g J,

t=1

LgE& devised the “Lead Pack”
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Analyzing the regret

1 1

Draw each perturbation X; s uniformly from {

t—1

In round t, select expert /; = arg min Z bis+ Z Xj.s
JE[N]

s=1 s=1

T T
Key Lemma: Expected Regret < 2y Pr(lep1 # ) + E|max Y Xi:| < 2 Pr(|LeadPack, >1) + O T log N
P g J,

t=1

L gES) devised the “Lead Pack”

® [0 control the probability of switching,

® | eadPack; (Lead Pack in round t) is set of experts that potentially can “take the lead” in round t + 1
(total perturbed loss within 2 of perturbed leader’s total perturbed loss)

N
| showed Pr(|LeadPack:| >1) =0 (\/ o8 )

® Using properties of binomial distribution,

t

® Putting everything together gives Expected Regret = O (\/ T log N)



FPL-ELF vs Random-Walk Perturbation

FPL-ELF is like Random-Walk Perturbation, but with two major differences

1) For a given expert and round, the noise random variable depends on the expert’s loss in that rounad
t

e (Cumulative noise Z Xj s Is centered version of scaled Poisson binomial random variable 4N - PBin(py, . . ., P:)
s=1
/ 1
e This is the major difficulty! Difficult to analyze &2 Ps = N

2) The scale of each noise random variable is very large (order N), so perturbed losses can be at scale N

U U6 | perturbed losses were constant order; leader change contributes at most 1 to the regret.

N

For us, a leader change can contribute N to the regret, so we pay N - » Pr(ley1 # It)
t=1



Happy lottery vs Sad lottery (Babylonian lottery)

Happy Lottery Sad Lottery

e At most one expert gets a happy point in each round e At most one expert gets a sad point in each round

® Selected expert has the most happy points ® Selected expert has the least sad points

® [or there to be a leader change, candidate must be the

Pr(ley1 # It) < Pr(|LeadPack;| > 1) leader and Lead Pack must contain more than one expert

Pr(lt_l_]_ # lt) S Pr(Ct — It) : Pr(‘LeadPath| > ].)

1

= Pr(|LeadPack;| > 1)

In terms of what our analysis can give, a sad lottery is much better than a happy lottery!

(We can kill off a factor of N that was introduced from the scale of the perturbed losses)



Regret bound

The expected regret of FPL-ELF is at most O \/ T Nlog T)

® |og T is likely an artifact of the analysis

® unknown if an exactly truthful mechanism can do better than O (\/ TN)




Bandit setting: FPL-ELF-¢

Bandit algorithm - we use an exploration-separated version of FPL-ELF

an exploration round with probabillity ¢

J
Each round is ,< o | N
| an exploitation round with probability 1 — ¢

In exploration round, we draw the candidate C; uniformly from [N] and select this candidate, so I, = G

In exploitation round, we use our Simple ELF lottery over the past exploration rounds

1 2 3 4 5 06 / 8 9 - t
AN AN AN
N N N
®+Q° ®+Q° w"‘Q\o

The expected regret of FPL-ELF-¢ is at most O (TZ/ SNY/3 log T)




Open Problems

What is the optimal rate for the regret for truthful mechanisms®?
In the bandit setting, is exploration separation necessary for exact truthfulness?

In the bandit setting, for truthful mechanisms is it possible to get regret lower than O (Tz/ 3) ?

Questions”?



