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1 Recap and Beyond

Let’s quickly review what we have covered in this course so far. In information elicitation, we saw
proper scoring rules, which are basic examples of mechanisms that incentivize agents to truthfully
reveal their information. Next, in auctions, we focused on DSIC mechanisms that maximize social
welfare (and ideally satisfy some additional properties as well). Designing an auction mechanism
that is DSIC can be viewed as incentivizing agents to be truthful while also considering a numbering
of other objectives as well.

We are now moving into the third major topic for this course: how to learn equilibria. Up
until now, we have focused on dominant strategy equilibria. For information elicitation, we only
considered a single agent, in which case any equilibrium must be a dominant strategy equilibrium.
For auctions, recall the “DS” in DSIC stands for dominant strategy. In both of these examples,
the equilibria were truthful, and we designed games keeping in mind that we want to ensure that
truthful equilibria exist. But what if we instead are given a game? How can we determine if it has
various types of equilibria? Moreover, if a game has a certain type of equilibrium (like a mixed
strategy Nash equilibrium), is it possible to approximately find such an equilibrium?

2 Congestion Games

Having spent most of the course so far with dominated strategy equilibria, we’ll now switch focus
to pure strategy Nash equilibria. Congestion games are an excellent class of games when it comes
to learning about pure strategy Nash equilibria. Informally, in a congestion game, multiple agents
use a common set of resources. Each resource induces a cost that depends on how many agents are
using the resource, and finally, each agent suffers a cost that is the sum of the costs of the resources
they are using. You might notice that we’ve switched from talking about agents having utilities
(which should be maximized) to agents having costs (which should be minimized). This switch is
because many typical examples of congestion games work better when agents have cost functions
rather than utility functions. We will continue using cost functions when we shift our attention to
online learning. Let’s formally define congestion games.



Definition 1 (Congestion game). In a congestion game,
o there are n agents (n is finite);
o there is a set R of m resources;

« each agent i has a set of strategies A; C 2%, so each strategy a; € A; is a subset of R
(we may think of agent i as using each resource in a;);

« cach resource r € R is associated with a cost! function ¢, : N — R;

As usual, A = A; x ... A,. Each agent i has a cost function

ci(a) = Z Er(nr(a))a

rea;

where n,(a) := |{j € [n]: 7 € a;}| is the number of agents using resource 7.

Let’s consider a first example of a congestion game.

Example 1. This example is a variant of Pigou’s example.? Let n > 2, and let the set of resources
be equal to the set of edges in the graph below. Each agent wishes to go from the source vertex s
to the sink vertex t. The edge costs are a function of how many agents use each edge.

Figure 1: Variant of Pigou’s example

Let’s consider the example when n = 10. This game has many pure strategy Nash equilibria:
in all the pure strategy Nash equilibria, at least 9 agents take the bottom route. Indeed, if only 8
agents take the bottom route, then an agent taking the top route would be better off by switching
to the bottom route. If at least 9 agents take the bottom route, the agent taking the top route
would not be better off by taking the bottom route. For this game, pure strategy Nash equilibria
are undesirable in a certain sense. Why? First, let’s define the social cost C(a) of a strategy profile
a as the sum of the agents’ respective costs:

n

C(a) = Zci(a).

=1

'If it helps you remember the notation, you may think of ¢ as a loss function, or as a load function.

In the original version of Pigou’s example, we assume that there are infinitely many agents and encode any
strategy profile as the proportion of agents using each edge. In this lecture, we look at a variation with finite n to
ensure that our example is a congestion game.




Social cost is the analogue of social welfare, adapted to cost functions. Now, observe that any pure
strategy Nash equilibrium has average (averaged over agents) social cost of at most

(n—l)-"T_l+1-1_1 11

n n  n2’

which for n = 10 gives 0.91. Moreover, as we increase n, the average social cost approaches 1.
If instead half the agents took the top route and the other half took the bottom route, then the
average social cost would be %. This discrepancy motivates a new definition.

Definition 2 (Price of Anarchy®). The price of anarchy is

max C/(a)
acPNE

min C(a)

where PNE is the set of pure strategy Nash equilibria.

We want the price of anarchy (PoA) to be as low as possible; 1 is ideal.

What is the price of anarchy (PoA) in Example 1 as n — 007 Since there is only one pure
strategy Nash equilibrium, the price of anarchy is ﬁ = %.

Let’s look at another example, again keeping in mind what happens as n — oo. Consider the

left panel of Figure 2 below.

Figure 2: Original network and modified network

Does this game have any pure strategy Nash equilibria? Yes, and there are actually many
of them, but they all share a common characteristic: as n — oo, in every pure strategy Nash
equilibrium, half the agents take the top path and the other half take the bottom path. Note that
these pure strategy Nash equilibria all have an average social cost of 1.5, which is the same as the
optimal average social cost. Hence, the PoA is 1.

Braess’s paradox is the curious phenomenon in selfish routing games that introducing an extra,
lower cost edge can sometimes actually lead an equilibrium that is much worse. Consider modifying

3This definition is the right one when agents have cost functions. When agents have utility functions u, ..., tun,
max W(a)
. . . . o n X ac : 3
price of anarchy is defined in terms of social welfare W(a) = > " u:(a) as “min W (a)" Lower is still better, and 1
a€PNE

is still ideal.




the above network by introducing a new, zero-cost edge as shown in the right panel of Figure 2
above.

In the new game, there is precisely one pure strategy Nash equilibrium: all agents take start
by taking the top left edge, then taking the “free” edge down, and finally taking the bottom right
edge. Indeed, if there exists a positive fraction of agents that do not take this “zig-zag” path,
then any one of these agents would be better off by unilaterally deviating to take the zig-zag path.
Consequently, for any pure strategy Nash equilibrium, the social cost is 2. Yet, any strategy profile
that existed in the original game is still valid in this game (agents are free to ignore the new edge);
in particular, the optimal average social cost is still 1.5. Thus, the price of anarchy is %.

A generalization. As n — oo, we saw that the PoA is 4/3 in both Pigou’s example and example
in Figure 2. Is this just a coincidence? Well, not exactly. For a general class of games called selfish
routing games, when the cost function for any resource is linear, it turns out that the PoA can
be at most 4/3 ~ 1.33 (and this is tight, as witnessed by the examples we saw). If one allows
cost functions to be quadratic, the worst case PoA is roughly 1.6. For cubic, it is roughly 1.9. In
general, for a polynomial of degree p, we get roughly ; ng, where log is the natural logarithm. For
more details about what exactly are selfish routing games, as well as proofs of these claims, see

Lecture 11 of Tim Roughgarden’s Twenty Lectures on Algorithmic Game Theory.

3 Congestion Games and Best-Response Dynamics

We’ve now seen a few examples of congestion games. In each example, there was at least one pure
strategy Nash equilibrium. Do all congestion games have pure strategy Nash equilibria? Remember
that Nash’s Theorem only tells us that every finite game has a mized strategy Nash equilibrium
(recall the game matching pennies, which had no pure strategy Nash equilibria). Could it be that
some congestion games has pure strategy Nash equilibria while others don’t? The answer is no.

Theorem 1. Every congestion game has a pure strateqy Nash equilibrium.

We'll see a constructive proof that makes use of a method called Best-Response Dynamics which,
in any congestion game, returns a pure strategy Nash equilibrium. Best-Response Dynamics is an
iterative procedure for updating a strategy profile a that works as follows. Whenever there exists
an agent ¢ that could reduce its cost by best-responding to a_;, the agent’s current strategy a; is
updated to a best response. Recal that a best response to a_; is some a; € A; that minimizes
¢i(a;,a_;). The formal procedure is shown below.

Algorithm 1: Best-Response Dynamics

Initialize @ = (a1, ..., a,) arbitrarily;

while there exists an agent i such that ming ¢4, ¢i(aj,a—;) < ¢i(a;, a—;) do
Select any a} satisfying c;(a},a—;) = min;;eAi ci(ah,a_y);
a; < aj;

end

return a;

The following lemma is immediate from the definition of pure strategy Nash equilibrium and
the halting condition of Best-Response Dynamics.




Lemma 1. If Best-Response Dynamics halts, then it returns a pure strategy Nash equilibrium (so,
a pure strategy Nash equilibrium exists).

Theorem 2. In every congestion game, Best-Response Dynamics halts.
This theorem, in combination with the previous lemma, implies the following corollary.
Corollary 1. Every congestion game has a pure strateqy Nash equilibrium.

Let’s prove the theorem.

Proof (of Theorem 2). The idea of the proof is to introduce a potential function ® : A — R with
the property that whenever some agent ¢ reduces its cost by best-responding to a_;, the potential
function also gets reduced. Formally, we will show that for all agents i € [n], strategies a;,a € A;,
and a_; € A_;, it holds that

ci(al,a;) — ci(ai,a—;) = ®(a, a_;) — ®(a;, a_;). (1)

Hence, any iteration of Best-Response Dynamics also reduces the potential function, implying that
the algorithm never revisits any strategy profile a. Since there are only finitely many strategy
profiles, the algorithm must terminate.

It remains to establish (1). Observe that

®(ai,a_;) — ®(a;,a_;)

nr(al,a_;) nr(ai,a—;)

=3 > L= > 4O
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which is the same as ¢;(a}, a_;) — ¢;(a;, a—;). O

Let’s reflect on what the proof did. The proof showed that the existence of an exact potential
function, i.e., a potential function for which equality (1) holds, implies that Best-Response Dynamics
halts. If you reflect on the proof, you might notice that it didn’t really matter that whenever an
agent’s cost decreases, the potential decreases by exactly the same amount. All that we really
needed was that if an agent’s cost decreases, the potential function also decreases. With this
insight in mind, we can define a large class of games for which the core argument of the above proof
still goes through.

4 Potential Games

Definition 3 (Potential game). We say a game is an (ordinal) potential game if there exists a
potential function ® : A — R such that for all agents i € [n], all strategies a;,a; € A;, and all
a_; € A_;, we have ¢;(a;,a_;) — ¢;(a,,a_;) < 0 implies ®(a;,a—;) — ®(a},a—;) < 0.

We will simply write “potential game” to mean ordinal potential game.
It is not hard to see that for every finite potential game, Best-Response Dynamics converges.
Thus, we have the following proposition.




Proposition 1. Let G be a finite game. If G is a potential game, then Best-Response Dynamics
is gquaranteed to converge.

If we zoom out quite a bit, we can phrase this result as “for every game that has structural
property X, a good thing Y happens”. We saw a previous such result in the case of proper scoring
rules: for every scoring rule that has the structural property that it can be expressed in terms of
some convex function G, the scoring rule is proper (so truthful reporting is optimal). For proper
scoring rules, we also saw that every proper scoring rule must have this structural property. With
this perspective in mind, it is natural to ask:

For every finite game in which Best-Response Dynamics is guaranteed to converge (“a
good thing Y happens”), is the game a potential game (“does the game have structural
property X”)?

It turns out the answer is yes, so that Proposition 1 can be extended to an if and only if.

Theorem 3. Let G be a finite game. Best-Response Dynamics is guaranteed to converge if and
only a G is a potential game.

Proof.

(<) Suppose a game is a potential game. It is easy to see that our proof that Best-Response
Dynamics converges in congestion games still goes through for potential games.

(=) Next, suppose Best-Response Dynamics is guaranteed to converge in G. We form a directed
graph from the game G as follows. Create a vertex for each strategy profile. From any strategy
profile a € A, we create an edge to each strategy profile a’ that results from some agent best-
responding and lowering their cost; more formally, for every pair of strategy profiles a and a’ such
that, for some agent ¢, we have o’ = (a}, a_;) and ¢;(a’) < ¢;(a), create an edge from a to o’

Since Best-Response Dynamics is guaranteed to converge, the graph does not have any cycles.
Hence, there must exist at least one vertex (a sink) with no outgoing edges, and any such vertex is
a pure strategy Nash equilibrium. We define the potential function as follows: for any a € A, set
®(a) to be the longest path distance* to a pure strategy Nash equilibrium (PNE). Finally, observe
that for any edge (a, a’), the longest path distance from a to a PNE is at least as long as the longest
path distance from o’ to a PNE (since, starting at a, we can first go to @’ and then follow any
longest path from o’ to a PNE). Hence, we have ®(a) > ®(a’) + 1, which gives ®(a’) < ®(a), as
desired. O

We have now seen a characterization of those finite games for which Best-Response Dynamics
converges. For any potential game, we can be assured that in finite time, Best-Response Dynamics
will give us a pure strategy Nash equliibrium. What more could we ask for? We can ask for quite
a bit more! In general, Best-Response Dynamics might take a number of iterations to converge
that is exponential in the number of agents. That’s bad. The good news is that if one is OK with
an approzimate pure strategy Nash equilibrium, then the core algorithmic idea (of “best-response
moves”) with a small tweak can give a reasonable approximation in a reasonable amount of time.

Let’s first see a notion of an approximate pure strategy Nash equilibrium.

Definition 4. We say that a € A is an e-approximate pure strategy Nash equilibrium if, for all
i € [n] and a} € A;, it holds that

ci(al,a—;) > ci(as, a_;) — .

4Each edge has a cost of 1.



The above definition is for costs. It is straightforward to adapt the definition to the case of
payoffs (utilities). One could instead consider multiplicative approximate (relative approximation)

Now, let’s consider a simple modification of Best-Response Dynamics for learning an e-approximate
pure strategy Nash equilibrium.

Algorithm 2: e-Best-Response Dynamics

Initialize a = (aq, ..., a,) arbitrarily;

while there exists an agent i such that ming e 4, ci(as,a_;) < ci(ai,a—;) —e do
Select any a} satisfying c;(a},a—;) = ming e 4, cilal, a_;);
a; < a;;

end

return a;

You may have noticed that in the original Best-Response Dynamics algorithm, it was not
important for our analysis that the deviating agent ¢ chooses a best response. It would have
sufficed for the agent to choose any response that strictly reduces her cost. Something similar is
true for e-Best-Response Dynamics: it suffices for a deviating agent i to select any a) that reduces
her cost by at least €.

The next result is more or less immediate from the definition of exact potential games, i.e.,
games for which an exact potential function exists.

Theorem 4. Let G be an exact potential game with a potential function ® taking values in a
finite range [Ppmin, Pmax|- Then e-Best-Response Dynamics is guaranteed to converge after at most
¢n)ax_¢min Y ;
max__—min gferations.

&€

For congestion games in particular (which we saw are exact potential games), if we assume
that for all » € R and j € {0,1,...,n}, it holds that £.(j) € [0, L], then ¢min = 0 and Ppax =
m -n - L. Hence, for such congestion games, e-Best-Response Dynamics converges after at most

mn-L jterations.

Bibliographical notes

1. These notes draw heavily from Bo Waggoner’s Lectures 2 and 3 of his 2018 Algorithmic Game
Theory course at UPenn, which can be found here: Lecture 2 Lecture 3.

2. For a different notion of e-approximate Nash equilibrium as well as more advanced results for
a slightly different notion of e-Best Response Dynamics , see Lecture 16 of Tim Roughgarden’s
Twenty Lectures on Algorithmic Game Theory: try this link or this one.
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