
Incentives and Machine Learning (CSC 482A/581A)
Lectures 14 and 15

Nishant Mehta

1 Prediction with expert advice
In the game of prediction with expert advice, there is an action space A, an outcome space Y, a
loss function ℓ : A × Y → R mapping each a given action a ∈ A and outcome y ∈ Y to a loss
ℓ(a, y). At the start of each round, each of K experts provides Learner with advice in the form of
a suggested action from A. Learner then aggregates these actions in some way, producing its own
action in A. Finally, Nature selects an outcome, and Learner and each expert suffer loss according
to their respective actions and the outcome. The goal of Learner is to ensure that its regret over
T rounds is small, where the regret is defined as the amount by which Learner’s cumulative loss
exceeds the cumulative loss of the best action in hindsight. The game protocol is given below.

Algorithm 1: Prediction with Expert Advice
for t = 1 → T do

Nature plays expert advice fj,t ∈ A for each expert j ∈ [K] and reveals the advice
(f1,t, f2,t, . . . , fK,t) to Learner

Learner plays action at ∈ A
Nature plays outcome yt ∈ Y and reveals it to Learner
Each expert j ∈ [K] suffers loss ℓ(fj,t, yt) and Learner suffers loss ℓ(at, yt)

end

Note that Nature controls both the experts and the outcomes. In sequential prediction problems,
the strength of the adversary (Nature) can vary; the adversary can be either:

• oblivious - Nature knows which algorithm Learner is using, but Nature must commit to its
entire sequence of expert advice and outcomes before Learner takes its first action.

• non-oblivious or adaptive - At any point in time, Nature can make its choice (whether expert
advice or outcome) based on all of Learner’s previous actions.

We will make no assumptions about Nature: Nature will be a non-oblivious adversary. Anytime
Nature makes a selection, it can do so using all the information revealed thus far. To be clear, the
expert advice fj,t for any expert j can be selected with knowledge of a1, a2, . . . at−1, while outcome
yt can be selected with the same knowledge as well as at.

The regret takes the form

RT :=
T∑

t=1
ℓ(at, yt) − min

j∈[K]

T∑
t=1

ℓ(fj,t, yt).

That is, the regret is simply Learner’s cumulative loss minus the cumulative loss of the best
expert in hindsight. Intuitively, regret quantifies how much sadness Learner feels for not having

1

always played the best action in hindsight. A basic demand in online learning is to have a learning
algorithm that is no-regret, meaning that the time-average of the regret 1

T RT goes to zero as T
approaches infinity, or, equivalently, the regret RT is sublinear in T . To see why such a requirement
is sensible, consider the case where the loss function takes values in some bounded range. Then
if Learner has regret growing linearly in T , up to a multiplicative constant it is doing no better
than constantly playing the worst action in hindsight! Another perspective comes from a stochastic
interpretation of the data. If we were in the statistical learning setting, then at a high level we may
think of the time-average of the regret as a form of risk, and the no-regret property is the analogue
of the excess risk decaying to zero as the sample size n approaches infinity.

Given Nature’s ability to adapt to the previous plays of Learner (and, in particular, to select
yt with knowledge of at), one wonders if any algorithm can always (i.e., against any strategy of
Nature) obtain sublinear regret for this problem. Without further assumptions on the action space
and loss function, Nature actually can ensure that any algorithm is forced to suffer linear regret.
However, if we assume the action space is convex, the loss function is convex with respect to its
second argument, and the losses are in some bounded range (e.g., the unit interval [0, 1]), then we
can show that the worst-case regret is sublinear.

Two common examples satisfying these assumptions are:

• Classification with absolute loss: Here, we take A = [0, 1], Y = {0, 1}, and ℓ(a, y) = |a − y|.

• Classification with squared loss: We take A and Y as before and now set ℓ(a, y) = (a − y)2.

To simplify the presentation, we set up some notation. For any j ∈ [K] and t ∈ [T], let
ℓj,t = ℓ(fj,t, yt) denote the loss of expert j in round t, and let Lj,t = ∑t

s=1 ℓj,s denote expert j’s
cumulative loss at the end of round t. Also, for any t ∈ [T], denote Learner’s loss in round t
ℓ̂t = ℓ(at, yt), and denote Learner’s cumulative loss at the end of round t by L̂t = ∑t

s=1 ℓ̂s.

2 Exponentially Weighted Average Forecaster
The algorithm that we study for this setting is called the exponentially weighted average forecaster
(EWA forecaster); it works as follows. In each round, the algorithm maintains weights over the
experts, with wj,t = e−ηLj,t indicating the weight of the j th expert at the end of round t. In round
t, the forecaster predicts according to the following weighted average of the experts’ actions:

at =
∑K

j=1 wj,t−1 fj,t∑K
j=1 wj,t−1

.

It will be convenient to rewrite the above using normalized weights; to this end, we introduce the
probability vector pt ∈ ∆K , defined as

pj,t = wj,t−1∑K
i=1 wi,t−1

.

Using pt, we can re-express at as at = Ej∼pt [aj,t].
In later lectures, we may consider a time-varying learning rate. However, since the learning

rate η is currently constant throughout the rounds, we also can write an incremental update for
the weights for all j ∈ [K] by:

• initializing via wj,0 = 1;

• at the end of round t, incrementally updating via wj,t = wj,t−1 · e−ηℓj,t .

2

I emphasize that if the learning rate is not constant, then we should not using the incremental form
of the update; doing so can result in linear regret.

We are now ready to see an upper bound on the worst-case regret of the EWA forecaster.

Theorem 1. Assume A is convex, the loss function is convex in its second argument, and the losses
are in the range [0, 1]. For any learning rate η > 0, any sequence of expert advice (fj,t)j∈[K],t∈[T],
and any sequence of outcomes y1, . . . , yT , the regret of the EWA forecaster satisfies

L̂T − min
j∈[K]

Lj,T ≤
T∑

t=1
⟨pt, ℓt⟩ − min

j∈[K]
Lj,T ≤ log K

η
+ η

T∑
t=1

K∑
j=1

pj,tℓ
2
j,t ≤ log K

η
+ Tη.

In particular, setting η =
√

log K
T makes the upper bound 2

√
T log K.

Proof. For the first inequality, observe that from the convexity of the loss, Jensen’s inequality
implies that

ℓ̂t = ℓ

 K∑
j=1

pj,tfj,t, yt

 ≤
K∑

j=1
pj,tℓ(fj,t, yt) =

K∑
j=1

pj,tℓj,t.

The main part of the proof is the second inequality. The proof centers around the sum Wt of
the experts’ weights in any round t. To this end, for t ∈ {0, 1, . . . , T}, we define Wt = ∑K

j=1 wj,t.
Note that L̂j,0 = 0 and hence wj,0 = 1 for all j.

From − 1
η log WT , we will “extract” the cumulative loss of the best expert in hindsight, and from

− 1
η log Wt

Wt−1
, we will extract Learner’s loss in round t. We then use the relation (from telescoping)

T∑
t=1

log Wt

Wt−1
= log WT − log W0 (1)

to relate Learner’s cumulative loss to the cumulative loss of the best expert in hindsight.

Step 1: We show that

−1
η

log WT ≤ min
j∈[K]

Lj,T .

Since the weights are nonnegative, we have for all i ∈ [K] (including the best expert in hindsight)

WT =
K∑

j=1
wj,T ≥ wi,T .

Hence,

−1
η

log WT ≤ −1
η

log e−ηLi,T = Li,T .

3

Step 2: We claim that

−1
η

log Wt

Wt−1
≥

T∑
t=1

⟨ℓt, pt⟩ − η
T∑

t=1
pj,tℓ

2
j,t.

We establish the claim as follows:
Wt

Wt−1
=

∑K
j=1 wj,t∑K

j=1 wj,t−1

=
∑K

j=1 wj,t−1e−ηℓj,t∑K
j=1 wj,t−1

=
K∑

j=1
pj,te

−ηℓj,t .

Now, we use that for all x ≥ −1, it holds that ex ≤ 1 − x + x2, so that the above is at most
K∑

j=1
pj,t

(
1 − ηℓj,t + η2ℓ2

j,t

)
= 1 − η⟨ℓt, pt⟩ + η2

K∑
j=1

pj,tℓ
2
j,t.

Finally, we use log(1 + x) ≤ x for x ≥ −1 to get

−1
η

log Wt

Wt−1
= −1

η
log

1 − η⟨ℓt, pt⟩ + η2
K∑

j=1
pj,tℓ

2
j,t


≥ ⟨ℓt, pt⟩ − η

K∑
j=1

pj,tℓ
2
j,t.

Step 3: Combining everything Using (1) and the previous steps, we have
T∑

t=1
⟨ℓt, pt⟩ − η

T∑
t=1

K∑
j=1

pj,tℓ
2
j,t ≤

T∑
t=1

−1
η

log Wt

Wt−1

= −1
η

log WT + 1
η

log W0

= −1
η

log WT + log K

η

≤ min
j∈[K]

Lj,T + log K

η
.

Rearranging gives the second inequality in the theorem statement:
T∑

t=1
⟨ℓt, pt⟩ ≤ min

j∈[K]
Lj,T + log K

η
+ η

T∑
t=1

K∑
j=1

pj,tℓ
2
j,t.

The third inequality is immediate from the losses being in [0, 1].

Against a worst-case adversary who seeks to maximize the regret, the bound 2
√

T log K has the
optimal rate; there is a matching lower bound (matching in terms of the rate). The constant 2 is
not the best possible. With a little more work, one can use a result known as Hoeffding’s Lemma
— instead of the inequalities ex ≤ 1 − x + x2 and log(1 + x) ≤ x — to improve the constant 2 to

1√
2 . As shown by a matching lower bound, the latter constant is the optimal constant as T → ∞.

4

3 Decision-theoretic online learning
We now introduce the setting of decision-theoretic online learning (DTOL). This setting is a very
important special case of prediction with expert advice. The DTOL protocol unfolds as follows.

Algorithm 2: Decision-Theoretic Online Learning
for t = 1 → T do

Learner plays probability distribution pt ∈ ∆K

Nature plays loss vector ℓt = (ℓ1,t, . . . , ℓK,t)⊤ ∈ [0, 1]K and reveals it to Learner
Each expert j ∈ [K] suffers loss ℓj,t and Learner suffers loss ⟨ℓt, pt⟩

end

This setting could be thought of as “prediction with expert advice without the expert advice”.
Learner never gets to observe each expert’s action (advice), but it still gets to observe each expert’s
loss. As such, Learner cannot mix the advice of the experts — it cannot mix inside the loss
— but it can randomize over the experts — it can mix outside the loss. The interpretation of
⟨ℓt, pt⟩ = Ej∼pt [ℓj,t] is then Learner’s expected loss if it randomly selects expert j with probability
pj,t. Alternatively, if Learner is allocating a fixed sum of money across the experts, then pt specifies
how Learner divides its money among the experts, and ⟨ℓt, pt⟩ is Learner’s actual (not expected)
loss.

Let us see how DTOL is a special case of prediction with expert advice. In prediction with
expert advice, we take action space A = ∆K and outcome space Y = [0, 1]K . Next, for given action
at ∈ A and outcome yt ∈ Y — which we may view as probability vector pt ∈ ∆K and loss vector
ℓt ∈ [0, 1]K respectively — the loss is ℓ(at, yt) = ⟨yt, at⟩ = ⟨ℓt, pt⟩. That is, for a fixed outcome,
the loss function is linear in the action. Finally, each expert j ∈ [K] uses the constant strategy
of setting (for all t) fj,t equal to ej ; here, ej is the j th standard basis vector in RK . This choice
satisfies ℓ(fj,t, yt) = ℓ(ej , ℓt) = ⟨ℓt, ej⟩ = ℓj,t, as desired.

What regret can Learner hope to acheve in DTOL? Since the losses are in [0, 1], the loss function
is convex in its second argument (recall that linear functions are convex), and the action space is
convex, Learner can use the EWA forecaster. Our regret bound Theorem 1 applies, and so for all
sequences of loss vectors, the regret is at most 2

√
T log K.

It is a bit clunky to view the algorithm as the EWA forecaster for prediction with expert advice
in the special case of DTOL. For simplicity, we directly present the algorithm, which is known as
Hedge, below.

Algorithm 3: Hedge
Input: η > 0
Set wj,0 = 1 for j = 1, . . . , K
for t = 1 → T do

Set pj,t = wj,t−1∑K
i=1 wi,t−1

for j = 1, . . . , K

Observe loss vector ℓt from Nature
Suffer loss ⟨ℓt, pt⟩
Set wj,t = wj,t−1e−ηℓj,t for j = 1, . . . , K

end

For convenience, we also summarize Hedge’s regret guarantee.

5

Theorem 2. Let Hedge be run with learning rate η =
√

log K
T . Then, for all sequences of loss

vectors ℓ1, . . . , ℓT ,

L̂T ≤ min
j∈[K]

Lj,T + 2
√

T log K.

Precisely the same comment about improving the constant applies to Hedge as well. Without
any change to the algorithm, the constant 2 can be improved to 1√

2 .

6

	Prediction with expert advice
	Exponentially Weighted Average Forecaster
	Decision-theoretic online learning

