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1 Auctions

In an auction, the party running the auction — the seller — has some goods to be divided among
the agents. These goods could consist of a single item or multiple items. In general, some of the
goods might be retained by the auction, but we avoid such alternatives, which could be viewed as
a self-allocation

Let us refer to each way of allocating the goods among the agents as an alternative. Let A be
the set of alternatives.

For example, in a single-item auction, there is a single, non-divisible item to be given to a single
agent (imagine auctioning an iPhone). The set of alternatives is A = [n] = {1,2,...,n}, where if
a = 1, then agent ¢ gets the item.

Another example is selling a collection of fruit. Suppose that there are two agents and the
goods consist of a mango, a passion fruit, and a crabapple; however, to ensure no one is stuck with
just the crabapple, the crabapple can only be sold together with either the mango or the passion
fruit. The constraint related to the crabapple induces some combinatorial structure. The number
of alternatives is the same as the number of ways to gives goods to the first agent (the second agent
receives the complement), of which there are 8 — 2 = 6 since the first agent cannot receive only the
crabapple and the first agent cannot receive only the mango and passion fruit.

Each agent ¢ has a valuation function v;: A — R which specifies, for each alternative a € A,
the agent’s valuation v;(a) of the item. It will be convenient to specify a set of valuation functions
V, so that v; € V.!

The mechanism is composed of:

e an allocation rule: X: V" — A ;
e a payment rule p: V" — R™ .

We make no assumption that agents truthfully report their valuation functions. Therefore, each
agent i gives a reported valuation, or bid, b; € V, resulting in a bid profile b € V™. A given bid
profile induces an allocation X (b) € A and payment vector p(b), where p;(b) is the amount that
agent ¢ pays.

We adopt the assumption that each agent has a quasilinear utility function:

ui(b) = vi(X (b)) — pi(b)

It is worth reflecting on what this type of assumption rules out. First, the amount that agent
pays for an alternative cannot affect their valuation of that alternative. Assuming that utility is
quasilinear is a natural starting point. Even so, can you think of realistic scenarios where an agent’s

'For our purposes, it is fine that we use the same set V for all agents.



utility function might not be quasilinear? A not-so-realistic example would be if an agent has 2
million dollars and is bidding on the right to gain access to a market to buy small islands. If the
cheapest small island costs a million dollars, the agent might not want to spend (say) 1.5 million
dollars to buy the right to enter the market!

Let’s return to the example of single-item auctions. There is a natural allocation rule: give the
item to highest bidder, so X (b) = arg max;e, bi, with ties broken arbitrarily.

Having decided the allocation rule, it remains to specify the payment rule. It also seems natural
to charge nothing to anyone who doesn’t receive the item. What should we charge the highest
bidder? Let’s consider a few options:

1. Charge the highest bidder b; (the highest bid). This is a first-price auction and poses many
difficulties. If the agent is truthful, then when they win they get 0 utility. So, the agent has
no incentive to be truthful and is in fact incentivized to underbid!

2. Charge the winning bidder the bid of the second highest bidder. This is a second-price auction
and turns out to be truthful, meaning that each agent is incentivized to truthfully report their
valuation.

2 Second-price auction

The first mechanism that we analyze is a second-price auction. Does agent i have a dominant
strategy? Yes! We will see that agent i’s dominant strategy is to truthfully bid its valuation.

Lemma 1. In a second-price auction, for any player i, truthful reporting (b; = v;) is a dominant
strateqy.

Proof. We will show that b; = v; is a dominant strategy for player i. Let 0" = max;eu)\ (4} bj be
the highest bid among the other players. We consider two cases: either v; > b* or v; < b*.

Case 1: v; > b*.

Bidding b; > b* results in utility v; — b* > 0, whereas bidding b; < b* results in utility 0.
Hence, for all b_; satisfying v; > b*, any bid b; > b* is a best response. In particular, the
truthful bid b; = v; is a best response.

Case 2: v; < b*.

Bidding b; < b* results in utility 0, whereas bidding v; > b* results in utility v; — b* < 0. So,
for all b_; satisfying b; < b*, any bid b; < b* is a best response. Once again, the truthful bid
b; = v; is one particular choice for a best response.

Since the cases together cover all b_;, it follows that b; = v; is a dominant strategy. O

The previous lemma shows that truthful reporting is a dominant strategy for every player i.
It therefore follows that there is a dominant strategy equilibrium, and, moreover, this equilibrium
is a truthful dominant strategy equilibrium. The next definition is common way of referring to
mechanisms that have such equilibria.

Definition 1. If each agent has a dominant strategy that is truthful, then we say there is a truthful
dominant strategy equilibrium. A mechanism that has a truthful dominant strategy equilibrium is
said to be dominant strategy incentive compatible (DSIC).

The next corollary is immediate.

Corollary 1. Second-price auctions are DSIC.




3 What makes a good auction?

In a certain sense, auctions which are DSIC are nice from the perspective of the party running
the auction: the bidders have no reason to lie, and so it is plausible that bidders reveal their true
valuations. Also, if an auction is DSIC, it is straightforward to maximize social welfare.

Definition 2. The social welfare of an allocation a € A is

n

W(a) = Z v;i(a).

=1

It will sometimes be convenient to refer to social welfare in the counterfactual world where the
bidders’ bids b are equal to their true valuations. Let us refer to this social welfare as social welfare
given valuations b, denoted mathematically as W(a | b) = > ; bi(a). In the very special case of
truthful bids, we have W(a | v) = W (a).

Definition 3. An auction is welfare-maximizing if it selects an allocation a* that maximizes social
welfare:

acA

Zvi(a*) = mavai(a) = max W (a).

If an auction is DSIC, then bidders’ bids should be equal to their valuation functions. Conse-
quently, the allocation rule can directly select a* as above to maximize social welfare.

In mechanism design, including auctions, it is important to consider whether the various actors
involved with the mechanism are incentivized to participate in the mechanism. In auctions, these
actors consist of the agents (the bidders) as well as the mechanism itself (the seller).

We first consider the bidders. From the perspective of the bidders, a very important property
is that a mechanism is individually rational.

Definition 4. An auction is (ex-post) individually rational (IR) if, for every bidder i, every v; € V,
and every b_; € V"1 it holds that

ui(v;, b_;) > 0.

The term “ex-post” more or less means “no matter what”: as long as agent i reports truthfully, the
agent can be assured to never have negative utility (no matter what the other bidders bid). There
are weaker forms of IR as well but these are beyond our scope for now.? If an fails to be IR, some
agents might not want to participate (which is bad).

Next, let’s consider the seller. From the seller’s perspective, it is desirable that the auction is
no deficit.

Definition 5. An auction is no deficit if the sum of the payments is nonnegative. That is, for all
beV™,

zn:pz’(b) > 0.
i=1

2For example, if all bidders’ valuation functions are drawn from a common prior distribution that is known to
all bidders, then a bidder who observes her own valuation function maintains a posterior distribution over the other
bidders’ valuation functions. In this situation, we might ask for “ex-interim individual rationality: the bidder’s
expected utility (by taking an expectation with respect to the posterior distribution over the other bidders’ valuation
functions) is nonnegative, which is does not mean that the bidder’s utility is always nonnegative.




If an auction fails to be no deficit, then the seller could lose both goods and money! The seller
might be better off not participating at all. Of course, there are situations where one wishes to pay
for someone to take something from them (imagine if you had nuclear waste), but these situations
are rather exceptional.

A very special case of being no deficit is being budget balanced.

Definition 6. An auction is budget balanced if the sum of the payments is equal to zero. That is,
for all b € V",

n

> pi(b) =0.

=1

We generally will not ask for the auction to be budget balanced. Indeed, budget balance implies
that if at least one agent pays a positive amount, then another agent pays a negative amount
(meaning, they actually receive money). We likely will see budget balance later in the course when
we cover some other topics.

So far, our wish list for auctions is that the mechanism be DSIC, welfare-maximizing, IR, and
no deficit. These aren’t the only criteria that matter. We live in reality, and it is important to
be able to run an auction in a reasonable amount of time. Therefore, we should seek auctions
that are computationally efficient. In real-world applications, auctions might need to run in digital
marketplaces, and they might need to run very quickly. The number of agents and items (or
bundles, in the case of combinatorial structure) could be very large. We might want an auction to
run in near-linear time in the size of the input. Even that might not be enough, however. Consider
what happens when the set of alternatives is exponentially large; it becomes infeasible for each
agent to report their valuation function, and even if they could do so, the size of the valuation
function would be exponentially large!

Computational efficiency ultimately is very important. Yet, in this introductory course, we will
not give much attention to computational efficiency in the interest of exploring other topics. There
is a large literature on trying to approximate computationally expensive mechanisms.

So far, we have seen second-price auctions for the single-item auction setting. It is an easy
exercise to verify that, in addition to being DSIC (as we proved), second-price auctions are welfare-
maximizing, IR, no deficit, and computationally efficient. It’s a good idea to do this exercise now
if you haven’t already!

4 General auctions

4.1 Groves mechanism

We now shift to thinking about how to design good auctions in general. We would like for our auc-
tion to be DSIC, welfare-maximizing, and IR (let’s consider computational efficiency as a bonus).?

Our strategy for designing auctions will be to first assume that the auction is DSIC, so that
bidders are truthful. Operating under this assumption, we select an allocation rule that is welfare-
maximizing. Finally, we hope (!) that it’s possible to choose a payment rule that ensures that the
auction really is DSIC and also that it is IR.

Amazingly, this strategy does work. The key to making it work is the payment rule. We will
slowly develop the payment rule, first seeing a generic rule that ensures the auction is DSIC and
then refining the rule to make it IR as well.

3No deficit is also important; we leave it to the reader to verify no deficit rather than explicitly discussing it here.




Let’s first develop some intuition. Suppose that the auction selects an alternative that maximizes
social welfare given valuations b, i.e., that maximizes W(a | b). An agent 4, in deciding what to
report, will select a bid that maximizes her utility. Now, if somehow the payment rule p; could
be chosen in such a way that agent i’s utility becomes equal to W (X (b) | b) except that agent ¢’s
true valuation always appears, then agent ¢’s utility and the social welfare (based on the bids) are
guaranteed to be equal if agent i’s bid is truthful. Put another way, if agent ¢ is truthful, then the
mechanism maximizes agent ¢’s utility! There can’t be anything better than that for agent i. The
question then becomes how we can choose p; to make agent i’s utility as desired.

Let’s try to derive a suitable payment rule. We now reason more formally. The question is:

Does there exist a payment rule p; such that if bidder ¢ is truthful (so b; = v;), it holds
that u;(b) = > ivq bi(X(0))?
Such a payment rule would be useful because X (b) maximizes social welfare given valuations b, i.e.,
n n
> bi(X (b)) = max > _bi(a).

i=1 acd i

This alignment of the agent’s objective and the mechanism’s objective is enough to blindly go
forward and set the payment rule. We will reason in the proof of the next result why lying can
only hurt the agent.

To set the payment rule, observe that under truthfulness of bidder i, we have

ui(b) = vi(X (b)) — pi(b) = bi(X (b)) — pi(b)-
So, we simply set p;(b) = — 3, b; (X (D)).
Lemma 2. Let the mechanism (X, p) be defined by
X (b) € argmax Z bi(a)
a€A i=1
and, for alli € [n],
pi(b) = =D _b;(X(b)).
J#
Then the mechanism is DSIC.

Proof. Consider an arbitrary bidder i € [n].
By definition,

u;(b) = vi(X (b)) — pi(b) = vi(X (b)) — (— > bj(X(b)))
i

= wi(X () + Y b (X (b)).
J#i

If b; = v;, then



Note that >7%_; bj(a) is exactly the objective being maximized by the mechanism. Now, consider
what happens if b; # v;. Then agent i’s utility function is still u;(b) = vi(X (b)) + 30,4 b; (X (D)),
but the mechanism selects an alternative a* to maximize the different objective 77 bj(a), and this
alternative a* need not maximize the agent’s utility. Therefore, truthful reporting is a dominant
strategy for bidder ¢ and likewise for all other agents. Hence, the mechanism is DSIC. O

What we have presented so far is a special case of the Groves mechanism. An obvious disadvan-
tage of this mechanism is that, assuming bids are nonnegative, all agents payments are nonpositive.
Assuming that valuations are nonnegative, the mechanism is certainly IR, but it certainly is not
no deficit!

To fix this, let’s explore an additional degree of freedom present in the payment rule without
compromising the DSIC property. Suppose that we adjust the payment rule to be

pi(b) = fi(b—i) — > _b;(X(b))
JF#i

for some function f;: V"~! — R that only depends on the other bidders’ bids. Since bidder i
cannot affect f;(b_;) in any way, the resulting mechanism is still DSIC.

Definition 7. The Groves mechanism is the family of mechanisms (X, p) defined by taking, for
any choice of functions fi, ..., f, all mapping V"~ ! to R,

X (b) € argmax Z bi(a)
a€A i=1

and, for all i € [n],

pi(b) = fi(b—s) — Y b;(X(b)).

J#

The following corollary is immediate.
Corollary 2. The Groves mechanism is DSIC.

The question now is whether we can choose f;(b_;) in such a way so that the resulting mechanism
is no deficit while still being IR. The answer is yes!
4.2 Vickrey-Clarke-Groves mechanism

We now introduce the Vickrey-Clarke-Groves (VCG) mechanism, an instance of the Groves mech-
anism.




Definition 8. The Vickrey-Clarke-Groves mechanism (X, p) is defined by taking
X (b) € argmax Z bi(a)
acA ;4

and, for all i € [n],

pi(b) = fi(b—i) — Y _b;(X (b)),
J#i
with
fl(b_l) = max bj (a)

acA —
J#

In words, the VCG mechanism instantiates the Groves mechanism by setting f;(b_;) to be equal
to the maximum social welfare in a world where agent ¢ does not exist. Let’s write the explicit
form of agent i’s payment rule to gain a better understanding of what it is doing. We have

pi(b) = max > bj(a) = Y b;(X(b)),
acA — .
JF#i JFi
Now, let’s denote an arbitrary (in case there are multiple) social welfare-maximizing alternative as
a* = X(b) € argmax,e 4 >_j—1 bi(a). Similar, considering the world where bidder i does not exist,
we denote an arbitrary social welfare-maximizing alternative as a7 ; € argmax,c4 >_;; b (a). We
can now rewrite the payment rule as

pi(b) = D bjlajs) — D bi(a”).
J#i J#i
Thus, we charge agent i the externality the agent imposes on the other agents, i.e, we charge agent
1 the amount by which the social welfare of the other agents drops due to agent i’s participation.

Theorem 1. The VCG mechanism is DSIC, welfare-mazimizing, IR, and no deficit.

Proof. The VCG mechanism is both DSIC and welfare-maximizing since it is an instance of the
Groves mechanism.

Let’s check that the mechanism is IR. Observe that for any agent ¢, assuming that agent i is
truthful (so b; = v;), we have

J# acA J#
=D b;(X(5)) — max > bj(a)
Jj=1 i
= ey 2 i) ey 2 bl
J=1 J#i
>0

Finally, the VCG mechanism is no deficit because each agent i’s payment
pi(b) = meajcz bj(a) — Z bi(X(D)).
A i

is clearly nonnegative. O]




The VCG mechanism seems great. It satisfies most of our criteria for good auctions. Unfor-
tunately, however, in many situations, the VCG mechanism is not computationally tractable. For
example, in some combinatorial settings, even selecting a* (a social welfare-maximizing alternative)
can be computationally intractable. Moreover, in many settings, we don’t realy want to ask bidders
to report their entire valuation functions as these could be incredibly large objects. Another issue
is that social welfare maximization is not always the goal. In the real world, companies might want
to maximize revenue instead. There is yet another issue with VCG in the real world. On the one
hand, VCG is DSIC. Another common term for DSIC is strategyproof: no individual agent can
strategize (act strategically, by lying) to gain utility. Unfortunately, however, the VCG mechanism
is not group strategyproof, meaning that a group of agents that collude to decide on false bids
might obtain higher utility than if they were both truthful. You will explore the concept of group
strategyproofness in the first problem set.



	Auctions
	Second-price auction
	What makes a good auction?
	General auctions
	Groves mechanism
	Vickrey-Clarke-Groves mechanism


