
Incentives and Machine Learning (CSC 482A/581A)
Lectures 9–11

Nishant Mehta

For general mechanism design problems, the VCG mechanism told us how we can design a DSIC
mechanism that is welfare-maximizing (as well as individually rational and no-deficit). What more
could one ask for? Well, among various issues with VCG, a major one is that the VCG mechanism
restricts the allocation rule to a single choice, namely, the rule that maximizes social welfare given
bids b. What if someone wants to use a different allocation rule? For example, a seller might not
want to sell an item unless a reserve price is met. How can we determine whether a given allocation
rule X can be extended — by appropriate choice of the payment rule P — to a DSIC mechanism?1

In this lecture, we will give a definitive answer to the previous question for a class of mecha-
nism design problems known as single-parameter environments. These environments can instantiate
many interesting problems. Let’s first introduce this family, see a few examples to convince our-
selves that they’re worthy of study, and then we’ll develop a far-reaching result. This result is
Myerson’s Lemma. In short, for direct-revelation mechanisms2, Myerson’s Lemma characterizes
which allocation rules X can be extended to a mechanism (X, P ) that is DSIC.

1 Single-Parameter Environments
In a single-parameter environment:

• Each alternative a is represented as (a1, . . . , an) ∈ Rn, where ai indicates how much stuff
agent i gets.

• Each agent i has a single parameter valuation vi ∈ R, where vi indicates agent i’s valuation
per unit of stuff. Therefore, each agent’s bid bi is in R.

Since alternatives are vectors, any allocation rule X can be expressed in terms of “partial allocation
rules” Xi, where X(b) = (X1(b), . . . , Xn(b)). Any agent i’s utility under bid profile b ∈ Rn can now
be expressed as

ui(b) = vi ·Xi(b)− Pi(b).

Example 1. In single-item auctions, each alternative is a binary vector a ∈ {0, 1}n with at most
one 1. Note that for welfare maximization, we have been assuming that there is precisely one 1.
More generally, if there is a reserve price for example, it could make sense to not give the item to
any bidder.

Example 2. Consider an auction with k identical items where each agent can get at most one
item. Then the set of alternatives are binary vectors a ∈ {0, 1}n with at most k ones.

1Note the switch to P instead of p; this will make some later parts of the lecture clearer.
2In a direct-revelation mechanism, agents are asked to report their valuation functions. All the auction mechanisms

we considered thus far were direct-revelation mechanisms. We will talk about other types of mechanisms a bit later.

1



Example 3. The previous two examples considered binary alternative vectors, but in general the
alternatives need not be binary. Suppose a power company runs an auction for a fixed amount W
(for Watts) of electricity to n factories. The electricity is infinitely. The set of alternatives are all
vectors a ∈ R+ such that ∑n

i=1 ai ≤W .

Example 4. Extending the previous example, in a knapsack auction, k identical items are being
sold. Each bidder i has a demand di, meaning the bidder needs precisely di items. The bidder
also has a valuation vi for getting di items (meaning, they get a total of vi units of happiness for
receiving di items). The set of alternatives are binary vectors a ∈ {0, 1}n such that ∑n

i=1 di ·ai ≤ k.
A typical goal is to maximize social welfare, which is ∑n

i=1 vi · ai.

Example 5. Imagine there is a disease outbreak and a health organization is trying to decide
how to allocate vaccines to n different cities in Canada. Each city will either vaccines or not get
vaccines, any city’s allocation will be binary. For political reasons, the health organization takes
an all-or-nothing approach for each province: either all cities in a province get vaccines, or none of
them do. So, any alternative a is a binary vector a ∈ {0, 1}n with grouped structure: all cities in
a province must get the same allocation. Finally, the allocation is decided based on how each city
(somehow. . . ) reports their valuation for getting vaccines.

2 From agent utilities to proper scoring rules
Let’s return to the main question for today’s lecture. How can we characterize the set of allocation
rules X that can be extended to a DSIC mechanism (X, P )? In answering this question, we turn
to proper scoring rules. As we now establish, for fixed bids b−i of the other agents, agent i’s utility
function can be viewed as a scoring rule. This connection will allow us to give structure to those
utility functions for which truthful reporting of agent i’s valuation vi is a dominant strategy.

2.1 Re-expression of single parameter proper scoring rules

Consider a binary outcome space Y = {0, 1}, so that ∆(Y) = [0, 1]. Let S : [0, 1] × {0, 1} → R be
a scoring rule. Observe that S is fully determined by defining the “partial scoring rules” S1(r) =
S(r, 1) and S0(r) = S(r, 0). As usual, we extend the second argument of S (the outcome) to [0, 1]
by writing

S(r, q) = EY ∼q [S(r, Y )] = qS(r, 1) + (1− q)S(r, 0) = qS1(r) + (1− q)S0(r).

To make a connection to an agent’s quasi-linear utility function in a single-parameter environment,
we re-express the scoring rule as

S(r, q) = q
(
S1(r)− S0(r)

)
+ S0(r).

When viewing a scoring rule as a payment rule (in the information elicitation setting, wherein the
agent receives the payment), we may interpret the scoring rule as always paying the agent S0(r)
and then correcting the payment by the difference of partial scores D(r) := S1(r)−S0(r) if outcome
1 happens. Using D, we finally re-express S as

S(r, q) = qD(r) + S0(r).

Let us compare the above form to agent i’s quasi-linear utility function when all other agent’s
bids are fixed to b−i. With some abuse of notation, we write the agent’s allocation as xi(bi) =

2



Xi(bi, b−i), the agent’s payment as pi(bi) = Pi(bi, b−i), and we explicitly indicate the agent’s (true)
valuation by writing the agent’s utility function as ūi(bi, vi) = ui(bi, b−i). Note that ūi leaves b−i

implicit, whereas ui leaves vi implicit. With this new notation, agent i’s utility (with b−i implicit)
is

ūi(bi, vi) = vi · xi(bi)− pi(bi).

Now, consider the correspondence:

vi ←→ q (belief)
xi ←→ D (generalized allocation)
bi ←→ r (reported belief)
−pi ←→ S0 (baseline payment)

With this correspondence, ūi(bi, vi) is nothing more than a scoring rule S(r, q). Hence, we
can apply our characterization of proper scoring rules! Our characterization tells us which scoring
rules are proper (which is the analogue of the DSIC property in auctions). For auctions, the
characterization tells us which mechanisms are DSIC (the analogue of properness in information
elicitation). We have the following lemma.

Lemma 1. Consider a mechanism (X, P ) in a single-parameter environment. The mechanism
(X, P ) is DSIC if and only if, for all agents i ∈ [n] and for all bids b−i of the other agents, there
exists a convex function G : R? → R such that agent i’s utility can be expressed as

ūi(bi, vi) = G(bi) + G′(bi)(vi − bi),

where G′ is the derivative of G.

Recall that when we showed that any proper scoring rule can be represented in terms of a convex
function, we actually only proved the nice case where the proper scoring rule is differentiable and the
convex function is differentiable. Yet, the characterization does hold in general. We similarly gloss
over the non-differentiable case in the above characterization of DSIC mechanisms. Everything can
be made to work in general, but with added technical difficulty. Yet, it is worth mentioning the other
end of the spectrum, which is when agent i’s utility is discontinuous in her bid. Such situations
are common: discontinuity happens even in second-price auctions (think about why). To see a
proof that directly accommodates things like second-price auctions (and many more complicated
auction mechanisms), I direct the reader to Section 3.4 of Tim Roughgarden’s Twenty Lectures on
Algorithmic Game Theory. If there is a time, I may try to extend the above lemma to indicate how
to use its form (with a subgradient in place of G′) to accommodate mechanisms like the second-price
auction.

It is worth reflecting on the meaning of G. In analogy with the proper scoring rules, wherein
G(q) = S(q, q), for auctions it will hold that G(vi) = viXi(vi, b−i) − Pi(vi, b−i). In the above,
nowhere did we restrict ourselves to mechanisms that are individually rational (IR). If a mechanism
is not only DSIC but also IR, does the mechanism being IR further limit the possibilities for the
function G? If so, then in what way?

We are almost ready to present Myerson’s Lemma, a foundational result in mechanism design.
We just need one definition.

Definition 1 (Monotone). An allocation rule X is monotone if, for all agents i and bids b−i ∈ V n−1

of the other agents, the partial allocation rule Xi(bi, b−i) is non-decreasing in agent i’s bid bi.

3



Intuitively, constraining an allocation rule to be monotone is a very mild restriction. If a an
allocation rule is not monotone, an agent who increases her bid might actually receive less stuff!
Such a situation seems particularly bad if the agent reports truthfully.

We now present Myerson’s Lemma. Fortunately, most of the heavy lifting in the proof was
already done by the previous lemma.3

Theorem 1 (Myerson’s Lemma). Consider an allocation rule X for a single-parameter environ-
ment. Then

(i) There exists a payment rule P such that the mechanism (X, P ) is DSIC if and only if X is
monotone.

(ii) If X is monotone and we assume that for all i that Pi(0, b−i) = 0, then there is a unique
payment rule P such that (X, P ) is DSIC, with P taking the explicit form

Pi(bi, b−i) = biXi(bi, b−i)−
∫ bi

0
Xi(z, b−i)dz =

∫ bi

0
z

∂Xi(z, b−i)
∂z

dz;

the second equality holds if any partial allocation rule Xi is differentiable in agent i’s bid.

Proof. By definition, agent i’s utility is

ūi(bi, vi) = vi · xi(bi)− pi(bi).

From Lemma 1, there exists a convex function G such that this same utility can be expressed
as

ūi(bi, vi) = G(bi) + G′(bi)(vi − bi) = G′(bi)vi + G(bi)− biG
′(bi)

The only possibility for xi is xi(bi) = G′(bi). Since G is convex, G′ is non-decreasing4 and hence
monotone, which proves part (i) of the theorem.

We now prove part (ii). Let us rewrite the utility as

ūi(bi, vi) = xi(bi)vi + G(bi)− bixi(bi).

We will absorb bixi(bi) into the payment rule. To get an explicit form of G(bi) in terms of xi,
observe that5 ∫ bi

0
xi(z)dz =

∫ bi

0
G′(z)dz = G(bi)−G(0),

and so

G(bi) =
∫ bi

0
xi(z)dz + G(0).

We set the payment rule as

pi(bi) = bixi(bi)−
∫ bi

0
xi(z)dz −G(0).

3The proof might look a bit dense because all of the symbols, but I assure you that (aside from one part of the
proof, which I point out), there is nothing fancy happening inside the proof.

4This is a property of convex functions.
5This is the fancy step.

4



Now, what value should G(0) take? Well, since we want pi(0) = 0, the only choice for G(0) is
G(0) = 0, which yields the payment rule in the theorem. Moreover, if x is differentiable (so G is
twice differentiable), we may write

bixi(bi)−
∫ bi

0
xi(z)dz =

∫ bi

0
zx′

i(z).

To last equality can be confirmed by applying integration by parts to the RHS.

3 Revelation Principle
All the mechanisms we have considered so far were direct-revelation mechanisms. In the context
of auctions, a direct-revelation mechanism is a mechanism that asks each agent to reveal her true
valuation function. More generally, when each agent has a type — some private information, such
as the agent’s belief in information elicitation or the agent’s valuation function in auctions — a
direct revelation mechanism is one which asks each agent to reveal her type.

In our coverage of auctions, we have always sought mechanisms that are DSIC. If a mechanism is
DSIC, then it has a dominant strategy equilibrium. Moreover, this dominant strategy equilibrium
is a truthful equilibrium, meaning that every agent is incentivized to report her valuation. Note
that a mechanism can be DSIC only if it is a direct revelation mechanism (since otherwise the
agent’s set of strategies is not equal to her set of valuation functions).

Yet, there are many examples of non-direct-revelation mechanisms. For example, consider any
of a number of ascending auctions, in which a price is iteratively increased and the last bidder wins
the item, or descending auctions, in which a price is iteratively decreased and the first bidder wins
the item. In general, in a non-direct-revelation mechanism, each agent i plays strategies si in some
set of strategies Si, with the set of strategy profiles being S = S1 × . . . Sn. The allocation rule X
and each payment rule Pi now take elements from S as inputs.

Ignoring computational issues, does the mechanism designer wield more power by going beyond
direct-revelation mechanisms? If we restrict attention to mechanisms that have a dominant strategy
equilibrium, then in a certain sense, the answer is no.

Theorem 2 (Revelation Principle). For any non-direct-revelation mechanism (X, P ) that has a
dominant strategy equilibrium, there is a DSIC direct-revelation mechanism (X̄, P̄ ) that implements
(X, P ).

By “implements”, we mean that the mechanism (X̄, P̄ ) works by using (X, P ) “under the hood”.
This will be made precise in the proof. Before getting to the proof, let’s reflect on the theorem
statement. The theorem applies to non-direct-revelation mechanisms that have a dominant strategy
equilibrium. Such mechanisms are nice in the sense that the designer can reasonably infer what
agents will do, i.e., play their dominated strategies. The theorem is interesting in that it takes the
“dominant strategy equlibrium” part of the DSIC definition and says that a mechanism satisfying
this first part of the definition can be “upgaded” to a direct-revelation mechanism that satisfies the
full definition.

Proof. For any agent i, set si(vi) be the agent’s dominant strategy given valuation vi ∈ Vi. We
design the mechanism (X̄, P̄ ) as follows:

1. Ask each agent i to report her valuation, giving bid bi ∈ Vi.

2. For each agent i, feed si(bi) into (X, P ).

5



The above mechanism simply asks each agent to report her valuation and then plays the agent’s
dominant strategy (given the reported valuation) on the agent’s behalf.

We see that “implements” means that the mechanism (X̄, P̄ ) is really just using mechanism
(X, P ), after converting bids to dominant strategies (since (X, P ) takes inputs in S instead of V ).

It is not hard to see why (X̄, P̄ ) is DSIC. Suppose that an agent’s utility were higher by reporting
some bi ̸= vi. Since the agent’s utility is higher, it must be the case of that si(bi) ̸= si(vi); however,
if si(bi) gives more utility (under mechanism (X, P ) than si(vi) when the agent’s (true) valuation
is vi, then si(vi) could not have been a dominant strategy, a contradiction.

6


	Single-Parameter Environments
	From agent utilities to proper scoring rules
	Re-expression of single parameter proper scoring rules

	Revelation Principle

