
Machine Learning Theory (CSC 482A/581A) - Lectures 19 & 20

Nishant Mehta

1 Computational hardness of agnostically learning halfspaces
In the problem of efficiently agnostically learning halfspaces over Rd, the goal is to learn a hypothesis
(not necessarily a linear separator) from a training sample which, with probability at least 1 − δ,
obtains risk at most ε in excess of the best linear separator using runtime polynomial in 1

ε ,
1
δ , and

the dimension d. If the learning algorithm is restricted to be a proper learner (which may only
output a halfspace), the problem is known to be NP-hard; moreover, the problem is NP-hard even
to approximate: obtaining risk ε + α · R(f∗) for some constant α is NP-hard.1 One wonders if
the situation might change if we allow improper learners, but, at least under prevailing complexity
assumptions on the hardness of various problems, the problem continues to be computationally
hard.

On the other hand, in the realizable case (where there is a linear separator that perfectly classifies
the data), one can use linear programming to efficiently identify an empirical risk minimizer. Using
our risk bounds based on VC dimension (which is d+ 1 in this case) and sufficiently many samples
(polynomial in the same 3 quantities as above), we can be assured that any such minimizer has
risk at most ε with high probability. While this may seem like progress, it turns out that we can
do much better from the statistical perspective when the data is separable by some margin γ.

2 Support vector machines
In the realm of classification using linear classifiers, we saw in the mistake bound model that data
that is linearly separable with a large margin can be learned with far fewer mistakes. An algorithm
obtaining a small mistake bound could in turn be converted into an algorithm for the statistical
learning setting which obtains a hypothesis with correspondingly low risk. Let’s turn now to the
statistical learning setting. Suppose that we have a training set which is linearly separable with
some margin γ. Clearly, there are infinitely many linear separators that obtain zero training error,
and thus there are infinitely many empirical risk minimizers. However, as we will see shortly, not
all empirical risk minimizers are created equal: those linear separators that achieve large margin
admit much smaller risk bounds as a result.

We begin by deriving an algorithm, the support vector machine (SVM), whose goal is to find
a linear separator that maximizes the margin. We first consider the case where the data is in-
deed linearly separable; this is often called the “hard margin” case. After that, we will relax the
requirement that the data be perfectly linearly separable, giving rise to the “soft margin” SVM.

The geometric margin. Let X = Rd and Y = {−1, 1}, and take F to be the set of nonhomo-
geneous linear separators {

x 7→ sgn(〈w, x〉+ b) : w ∈ Rd, b ∈ R
}
.

1See (Daniely, 2015) for more details, including hardness results for improper learning.
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Each classifier in F can be identified with a separating hyperplane{
x ∈ Rd : 〈w, x〉+ b = 0

}
. (1)

Let’s use (w, b) to refer to the corresponding hyperplane.
The (geometric) margin of a hyperplane (w, b) is defined as the minimum distance of the hy-

perplane to a point in the training sample. For a given example xj , the distance from xj to the
hyperplane (w, b) is

|〈w, xj〉+ b|
‖w‖

.

(I drew a picture explaining this in class)
From the equation (1) defining any hyperplane (w, b), we see that the hyperplane is invariant

to scaling w and b by the same positive constant. We will pick a particular, convenient scaling in
order to simplify the computation of the margin. If the data is separable by a hyperplane (as we
assume here), the hyperplane does not pass through any point, and we can scale (w, b) such that

min
j∈[n]
|〈w, xj〉+ b| = 1.

In the context of linear separators, any hyperplane with such scaling is referred to as a canonical
hyperplane. We will refer to the above condition as the canonicality condition.

The margin then takes a particularly simple form:

min
j∈[n]

|〈w, xj〉+ b|
‖w‖

= 1
‖w‖

.

Hard margin SVM. The SVM seeks to maximize the margin, which is equivalent to minimizing
‖w‖ subject to the canonicality condition. Equivalently, the SVM is the solution to the following
optimization problem:

minimize
w,b

1
2‖w‖

2

subject to yj(〈w, xj〉+ b) ≥ 1, j ∈ [n].
(Hard-SVM)

Observe that for any candidate solution for which all the constraints are inactive, the objective can
be improved by scaling down (w, b) until a constraint becomes active. Therefore, the solution to
the SVM problem indeed satisfies the canonicality condition.

The SVM problem is a convex optimization problem. At this point, we can walk over to our
friends in optimization and they will happily give us a solution to the SVM problem.

Soft margin SVM. For training sets that are not linearly separable, the hard margin SVM
optimization problem does not have a solution. The issue is that the linear inequality constraint
cannot be satisfied for all the training examples simultaneously. The soft margin SVM offers a
solution to this issue by relaxing these constraints with slack variables ξ1, . . . , ξn and introducing a
regularization parameter C ≥ 0:

minimize
w,b
ξ≥0

1
2‖w‖

2 + C
n∑
j=1

ξj

subject to yj(〈w, xj〉+ b) ≥ 1− ξj , j ∈ [n].

(Soft-SVM)

2



Similar to before, the above problem is a convex optimization problem and can be solved efficiently.
There is a particularly useful way to interpret the ξj variables. These variables can be thought

of as indicating “margin errors”:
Let γ = 1

‖w‖ . For any ξj that is equal to zero, it holds that

yj(〈w, xj〉+ b)
‖w‖

≥ 1
‖w‖

= γ,

and hence (xj , yj) is correctly classified with margin at least γ. For any positive ξj ∈
(0, 1), however, the example is correctly classified but with margin only (1−ξj)γ. Lastly,
if ξj ≥ 1, this example has been misclassified. Now, we can define a margin error (with
respect to margin γ) to be any example that is not classified correctly with margin at
least γ, which corresponds precisely to the set of indices {j ∈ [n] : ξj > 0}.

3 Margin bounds
Now that we have an algorithm that attempts to obtain large margin over the training sample, it
makes sense to try to develop risk bounds that benefit from hypotheses obtaining large margin.

But first, recall the story of our Rademacher complexity-based risk bounds in the case of
classification with VC classes.

We began with a risk bound based on empirical Rademacher complexity: for any estimator f̂ ,
with probability at least 1− δ over the training sample,

E
[
1
[
Y 6= f̂(X)

]]
≤ 1
n

n∑
j=1

1
[
Yj 6= f̂(Xj)

]
+R̂n(`0−1 ◦ F) +O

√ log 1
δ

n

 .
We then used the very special relationship

R̂n(`0−1 ◦ F) = 1
2R̂n(F), (2)

which was useful because we could then bound R̂n(F) via the growth function (which in turn is
bounded in terms of the VC dimension), yielding the final bound

E
[
1
[
Y 6= f̂(X)

]]
≤ 1
n

n∑
j=1

1
[
Yj 6= f̂(Xj)

]
+O

√VCdim(F)
n

+O

√ log 1
δ

n

 .
Unfortunately, when the dimension d is large, this bound scales like O(

√
d
n). But this is really

the best that we can hope for in a worst-case scenario, and at the point when we have leveraged
inequality (2), we have thrown away the labels and hence given up all hope of obtaining a better
bound for data that is separable by a large margin.

We therefore will proceed differently, and instead of invoking (2), we will try to find some way
to instead obtain a bound that can improve as the margin gets larger, while simulataneously not
depending on the dimension.

We begin by considering a useful rewrite of the soft-margin SVM problem. First, we rearrange
the terms in the constraints of problem (Soft-SVM), yielding the problem

minimize
w,b
ξ≥0

1
2‖w‖

2 + C
n∑
j=1

ξj

subject to ξj ≥ 1− yj(〈w, xj〉+ b), j ∈ [n].
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Next, observe that this problem is equivalent to the problem

minimize
w,b

1
2‖w‖

2 + C
n∑
j=1

max
{
0, 1− yj(〈w, xj〉+ b)

}
.

This motivates the definition of the hinge loss:

`hinge(y, f(x)) = max {0, 1− yf(x)} .

Unlike the zero-one loss, the second parameter of hinge loss can be real-valued. In fact, for a
real-valued predictor f : X → R, we can also extend the zero-one loss to real-valued predictions via
the extended definition

`0−1(y, f(x)) = 1 [yf(x) ≤ 0] .

Problem (Soft-SVM) may now be rewritten as

minimize
w,b

1
n

n∑
j=1

`hinge(yj , 〈w, xj〉+ b) + λ

2 ‖w‖
2,

where we have the correspondence λ = 1
Cn .

This rewrite makes evident that the soft-margin SVM problem involves regularized empirical
risk minimization (under hinge loss); specifically, this problem involves minimizing the empirical
hinge risk plus a penalty on the squared `2-norm of w, with λ modulating the magnitude of the
penalty.

The hinge loss is a member of a general family of losses known as margin losses.

Definition 1 (margin loss). A loss function ` : Y × R→ R is a margin loss if it can be expressed
in the form `(y, ŷ) = Φ(yŷ) for some function Φ : R→ R.

We can express the hinge loss as a margin loss using the function

Φhinge(t) = max{0, 1− t}.

(I drew a picture in class)
The zero-one loss also can be expressed as a margin loss, via the function

Φ0−1(t) = 1 [t ≤ 0] .

We now proceed to derive a risk bound that improves with the margin using two key ingredients
infused into a Rademacher complexity-based approach:

1. We will try to swap the zero-one loss for a Lipschitz loss in our analysis, but while still ob-
taining an upper bound on the risk under zero-one loss. If we can do this, we can avoid the
VC dimension-based upper bound on the Rademacher complexity of a set of classifiers. In-
stead we need only deal with a set of linear predictors, for which we already have a Rademacher
complexity bound (we saw this bound in the last lecture).

2. We will try to relate the Lipschitz loss to the margin. Ideally, if the margin is large, the
Lipschitz constant is small, and so our Rademacher complexity-based risk bound will improve
with the margin.
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For the sake of our analysis, it will be useful to normalize our set of linear predictors such that
w always has unit norm. To this end, for any hyperplane (w, b), let fw,b(x) = 〈w,x〉+b

‖w‖ and define
the normalized class F1 as F1 := {fw,b : w ∈ Rd, b ∈ R}.

Now, consider some example (x, y) that is correctly classified by some fw,b ∈ F1 with margin
at least γ > 0. Then

yfw,b(x) = y (〈w, x〉+ b)
‖w‖

≥ γ. (3)

The zero-one loss of fw,b on this example is clearly zero since 1 [yfw,b ≤ 0] = 0, but, moreover, even
if we were to increase the threshold for correct classifications to just under γ, i.e., 1 [yfw,b < γ],
the loss is still zero. Moreover, by making this change, we now are free to “charge” for errors by
linearly interpolating between the threshold γ and the threshold 0. This linear interpolation gives
rise to a particularly useful subclass of margin losses known as “ramp losses.”

The γ-ramp loss is the margin loss defined via the function

Φγ(t) =


0 if t ≥ γ
1− t

γ if 0 < t < γ

1 if t ≤ 0.

(I drew a picture in class)
Why is the γ-ramp loss useful in developing a margin bound? From (3), if fw,b classifies (x, y)

with margin at least γ, then Φγ(yfw,b(x)) = 0, so there is a clear link between the γ-ramp loss
and correctly classifying an example with margin γ. Moreover, as t = yfw,b(x) decreases from γ to
zero, Φγ(t) increases at the rate of 1

γ . Thus, Φγ is 1
γ -Lipschitz, and, consequently, the γ-ramp loss

is 1
γ -Lipschitz in its second argument.
A useful observation is that the zero-one loss is upper bounded by the γ-ramp loss for any

γ > 0.2 Consequently, we have for any (real-valued) hypothesis f that

E
[
1 [Y f(X) ≤ 0]

]
≤ E

[
Φγ(Y f(X))

]
. (4)

This is incredibly useful, as we now can upper bound the risk under γ-ramp loss using our
Rademacher complexity-style analysis, and whatever bound we obtain will also be an upper bound
on the risk under zero-one loss!

Everything is now in place to obtain a risk bound that depends on the margin. From the
uniform convergence bound based on empirical Rademacher complexity (and using (4)), it holds
with probability at least 1− δ that for all f ∈ F1,

E
[
1 [Y f(X) ≤ 0]

]
≤ E

[
Φγ(Y f(X))

]
≤ 1
n

n∑
j=1

Φγ(Yjf(Xj)) + 2R̂n(Φγ ◦ F1) +

√
2 log 2

δ

n

≤ 1
n

n∑
j=1

Φγ(Yjf(Xj)) + 2
γ
R̂n(F1) +

√
2 log 2

δ

n
.

Next, we adopt the simplifying assumption that b = 0. Handling the case of general b (i.e. the
nonhomogeneous case) is quite advanced/complicated and rarely discussed; a common, textbook

2The zero-one loss also is upper bounded by the hinge loss; in fact, even the 1-ramp loss is upper bounded by the
hinge loss.
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approach to handle the nonhomogeneous case is to add an extra dummy dimension to each input x
which always takes the value 1 (so that we also increase w by one dimension, and the last component
of w now plays the role of b), but this transformation can have a drastic effect on the norm of w
and hence on the margin.

Since we are in the homogeneous case, from our upper bound on the Rademacher complexity
of linear prediction classes (stated in last lecture), we have

R̂n(F1) ≤
maxj∈[n] ‖Xj‖√

n
,

where we used the fact that ‖w‖2 = 1 for all fw,b ∈ F1.
Thus, we have the following risk bound: with probability at least 1− δ, for all f ∈ F1,

E [1 [Y f(x) ≤ 0]] ≤ 1
n

n∑
j=1

Φγ(Yjf(Xj)) +
2 maxj∈[n] ‖Xj‖

γ
√
n

+

√
2 log 2

δ

n
.

Lastly, to make the bound more interpretable, we use the fact that Φγ(t) ≤ 1 [t < γ], where we
call the margin loss defined by threshold γ the γ-margin error.

Then we have, for any γ > 0, with probability at least 1− δ, for any f ∈ F1,

E [1 [Y f(x) ≤ 0]] ≤ 1
n

n∑
j=1

1 [Yjf(Xj) < γ] +
2 maxj∈[n] ‖Xj‖

γ
√
n

+

√
2 log 2

δ

n
.

Note that the above bound is valid for any choice of γ, as long as the choice is made before
seeing the data. It is straightforward to form an essentially equivalent bound that holds for all γ
(in some closed interval) simultaneously.

Note that Φγ(y(〈w, x〉+ b) · γ) = Φ1(y(〈w, x〉+ b)) ≤ Φhinge(y(〈w, x〉+ b)).
Consequently, in the special case that we take γ = 1

‖w‖ (recall that γ is now a parameter of our
risk bound), we can view the SVM objective as trying to make the γ-ramp loss small while also
trying to make γ (which is now the margin) large.
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