
Machine Learning Theory (CSC 482A/581B) - Lectures 10 and 11

Nishant Mehta

1 The bounded differences inequality
We previously have seen how to derive high probability upper bounds on the excess risk for VC
classes, in either the realizable case and the more general agnostic setting. As we will see in this
lecture and the next, the bound in the agnostic setting can be recovered using a different notion
of the complexity called Rademacher complexity. In addition, bounds based on Rademacher com-
plexity readily generalize other loss functions such as squared loss, thereby providing risk bounds
for regression as well.

Before deriving a risk bound, we first need a powerful concentration inequality known as the
bounded differences inequality and often called McDiarmid’s inequality (McDiarmid, 1989). This
inequality holds for functions which satisfy a bounded differences condition.

Definition 1. We say that a function g : Zn → R satisfies the bounded differences condition with
constants c1, . . . , cn if, for all i ∈ [n],

sup
z1,...,zn,z′i∈Z

∣∣g(z1, . . . , zn)− g(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)

∣∣ ≤ ci.
Throughout this lecture, Zn1 will denote (Z1, . . . , Zn).

Theorem 1. Let Z1, . . . , Zn be independent random variables taking values in Z. If a function
g : Zn → R satisfies the bounded differences condition with constants c1, . . . , cn, then for any t > 0,

Pr
(
g(Zn1 )− E[g(Zn1 )] ≥ t

)
≤ exp

(
− 2t2∑n

j=1 c
2
j

)
.

Remarks. By applying the above result with −g instead of g, it also holds that

Pr
(
g(Zn1 )− E[g(Zn1 )] ≤ −t

)
≤ exp

(
− 2t2∑n

j=1 c
2
j

)
.

Therefore, we also have the two-sided inequality

Pr
(∣∣g(Zn1 )− E [g(Zn1 )]

∣∣ ≥ t) ≤ 2 exp
(
− 2t2∑n

j=1 c
2
j

)
.

2 Excess risk bound based on Rademacher complexity
Since uniform convergence is sufficient for learning (and, in particular, sufficient for learning using
ERM), we begin with the familiar random quantity

sup
f∈F

E [`f (Z)]− 1
n

n∑
j=1

`f (Zj)

 , (1)
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where Z = (X,Y ) (likewise Zj = (Xj , Yj)) and `f (Z) is the loss suffered by hypothesis f under out-
come Z. In the case of classification, the loss function is zero-one loss, and so `f (Z) = 1 [f(X) 6= Y ].
Our goal is to obtain a high probability upper bound on (1), and we do this in 2 steps.

Step 1: Relating (1) to its expectation

Let us assume that the loss function is bounded, so that we always have `f (z) ∈ [0, b] for some
constant b > 0. Then, letting g(Zn1 ) = supf∈F

{
E [`f (Z)]− 1

n

∑n
j=1 `f (Zj)

}
, it is simple to verify

that g satisfies the conditions of Theorem 1 with cj = b for all j ∈ [n]. Indeed, since for any i ∈ [n],

g(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn) = sup

f∈F

E [`f (Z)]− 1
n

n∑
j=1

`f (zj) + 1
n

(
`f (zi)− `f (z′i)

)
≤ sup

f∈F

E [`f (Z)]− 1
n

n∑
j=1

`f (zj)

+ 1
n

sup
f∈F

{
`f (zi)− `f (z′i)

}
≤ g(z1, . . . , zn) + b.

Applying Theorem 1 (with inversion), it holds that with probability at least 1− δ,

sup
f∈F

E [`f (Z)]− 1
n

n∑
j=1

`f (Zj)

 ≤ E

sup
f∈F

E [`f (Z)]− 1
n

n∑
j=1

`f (Zj)


+ b

√
log 1

δ

2n .

Step 2: Symmetrization

We now perform symmetrization by ghost sample and symmetrization by random signs in succes-
sion. To this end, let Z ′1, . . . , Z ′n be an independent copy of Z1, . . . , Zn. Then

E

sup
f∈F

E [`f (Z)]− 1
n

n∑
j=1

`f (Zj)


 = E

sup
f∈F

E

 1
n

n∑
j=1

`f (Z ′j)

− 1
n

n∑
j=1

`f (Zj)


 .

Next, since the supremum of an expectation is at most the expectation of the supremum, the
above is at most

E

sup
f∈F

 1
n

n∑
j=1

(
`f (Z ′j)− `f (Zj)

)
 .

Let σ1, . . . , σn be independent Rademacher random variables (i.e. taking values −1 and +1 with
equal probability 1

2). Since Z1, . . . , Zn, Z
′
1, . . . , Z

′
n are i.i.d., the above quantity is equal to

E

sup
f∈F

 1
n

n∑
j=1

σj
(
`f (Z ′j)− `f (Zj)

)
 ,

which is at most

E

sup
f∈F

1
n

n∑
j=1

σj`f (Z ′j)

+ E

sup
f∈F

1
n

n∑
j=1

(−σj)`f (Zj)

 = 2 E

sup
f∈F

1
n

n∑
j=1

σj`f (Zj)

 .
Defining the class LF := {`f : f ∈ F}, we have just obtained an upper bound in terms of the

Rademacher complexity of LF .
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Definition 2. Let G be a class of functions mapping from Z to R. The empirical Rademacher
complexity of G (with respect to sample Zn1 ) is defined as

R̂n(G) = E

sup
g∈G

1
n

n∑
j=1

σjg(Zj)

∣∣∣∣∣∣ Zn1

 .
The Rademacher complexity of G (with respect to probability distribution P ) is defined as

Rn(G) = E
[
R̂n(G)

]
= E

sup
g∈G

1
n

n∑
j=1

σjg(Zj)

 .
We will make a few remarks about Rademacher complexity shortly; but first, let’s formulate

the conclusion of Steps 1 and 2.

Theorem 2. With probability at least 1− δ,

sup
f∈F

E [`f (Z)]− 1
n

n∑
j=1

`f (Zj)

 ≤ 2Rn(LF ) + b

√
log 1

δ

2n .

The following excess risk bound is almost immediate.

Corollary 1. Let f̂ be any ERM estimator and let f∗ be the risk minimizer over class F . If `f (Z)
takes values in [0, b] for all f ∈ F , then with probability at least 1− δ,

R(f̂) ≤ R(f∗) + 2Rn(LF ) + b

√
2 log 2

δ

n
.

Proof. First,

R(f̂)−R(f∗) =
(
R̂(f̂)− R̂(f∗)

)
+
(
R(f̂)− R̂(f̂)

)
+
(
R̂(f∗)−R(f∗)

)
≤
(
R(f̂)− R̂(f̂)

)
+
(
R̂(f∗)−R(f∗)

)
.

From Theorem 2, with probability at least 1− δ/2,

R(f̂)− R̂(f̂) ≤ 2Rn(LF ) + b

√
log 2

δ

2n .

Also, from either the bounded differences inequality (Theorem 1) or Hoeffding’s inequality, with
probability at least 1− δ/2,

R̂(f∗)−R(f∗) ≤ b

√
log 2

δ

2n .

If F is a set of classifiers and the loss function is the zero-one loss, then the Rademacher
complexity of LF can be expressed in terms of the Rademacher complexity of the class F itself.
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Indeed, letting Y = {−1, 1}, we have

R̂n(LF ) = Eσ

sup
f∈F

1
n

n∑
j=1

σj 1 [f(Xj) 6= Yj ]


= Eσ

sup
f∈F

1
n

n∑
j=1

σj
1− Yjf(Xj)

2


= 1

2 Eσ

sup
f∈F

1
n

n∑
j=1

σjYjf(Xj)


= 1

2 Eσ

sup
f∈F

1
n

n∑
j=1

σjf(Xj)


= 1

2R̂n(F),

where the third equality follows since each Rademacher random variable has zero mean, and the
fourth equality follows because, conditional on Zn1 , the distributions of σjYj and σj are identical.
It therefore also holds that Rn(LF ) = 1

2Rn(F).
Using this relation, we now have an excess risk bound for sets of classifiers that depends only

on the Rademacher complexity of F :

Theorem 3. Let F be a set of classifiers, let f̂ be any ERM estimator over F , and let f∗ be the
risk minimizer over class F . Then with probability at least 1− δ,

R(f̂) ≤ R(f∗) +Rn(F) +

√
2 log 2

δ

n
.

Remarks. As above, let Y = {−1, 1}. Consider R̂n(F), the empirical Rademacher complexity
of a set of classifiers F with respect to a fixed sequence of inputs Xn

1 = (X1, . . . , Xn). Letting
σ = (σ1, . . . , σn) and f(Xn

1 ) = (f(X1), . . . f(Xn)), this may be rewritten as

1
n

Eσ

[
sup
f∈F
〈f(Xn

1 ),σ〉
]
.

Thus, the empirical Rademacher complexity of F measures the ability of functions from F to fit
random noise (specifically, random sign noise, or random labels). Now, if for every sign vector
σ ∈ {−1, 1}n there is a function f ∈ F which labels as 1 precisely those examples Xj for which
σj = 1 (and labels the other examples −1), then F shatters Xn

1 and it holds that R̂n(F) = 1. The
class F clearly is a rich class compared to the sample size, and this exactly corresponds to it being
a class of maximum Rademacher complexity (at this sample size); as a result, Theorem 3 provides
only a trivial excess risk bound, as we should expect.
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3 Bounding Rademacher complexity
Massart’s finite class lemma (to leverage the growth function, among other reasons).

Lemma 1. Let A be a finite subset of Rn, with r = maxa∈A ‖a‖2. Let σ1, . . . , σn be independent
Rademacher random variables. Then

E

max
a∈A

n∑
j=1

σjaj

 ≤ r√2 log |A|.

Proof. First, from Jensen’s inequality and the convexity of x 7→ exp(x), it holds that

exp

λE

max
a∈A

n∑
j=1

σjaj

 ≤ E

exp

λmax
a∈A

n∑
j=1

σjaj

 = E

max
a∈A

exp

λ n∑
j=1

σjaj

 .
Since the max is bounded by the sum, this is at most

∑
a∈A

E

exp

λ n∑
j=1

σjaj

 =
∑
a∈A

n∏
j=1

E
[
eλσjaj

]
=
∑
a∈A

n∏
j=1

(
e−λaj + eλaj

2

)
. (2)

Next, we use the inequality1 e−x+ex

2 ≤ ex2/2, which follows by taking a Taylor expansion:

1
2
(
e−x + ex

)
= 1

2

(
1− x+ x2

2 −
x3

3! + x4

4! . . .
)

+ 1
2

(
1 + x+ x2

2 + x3

3! + x4

4! + . . .

)

= 1 + x2

2 + x4

4! + x6

6! . . .

≤ 1 + x2

2 + (x2)2

22 · 2 + (x2)3

23 · 3! . . .

= ex
2/2.

Therefore, (2) is at most

∑
a∈A

exp

 n∑
j=1

λ2a2
j/2

 ≤∑
a∈A

eλ
2r2/2 ≤ |A|eλ2r2/2.

Putting together the sequence of inequalities, taking the log, and dividing by λ yields

E

max
a∈A

n∑
j=1

σjaj

 ≤ log |A|
λ

+ λr2

2 .

It remains to tune λ, which can be done by finding a value of λ such that the derivative is equal to
zero. Setting λ =

√
2 log |A|
r2 yields the result.

1This could be referred to as the hyperbolic cosine trick, since 1
2

(
e−x + ex

)
= cosh(x).
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Recovering excess risk bounds for VC classes. With Massart’s finite class lemma in hand, it
is now simple to obtain an excess risk bound for VC classes. Let F be a class whose VC dimension
is V . Starting from Theorem 3, it remains to bound the Rademacher complexity of F . Observe
that

Rn(F) = E
[
E
[
R̂n(F) | Xn

1

]]
= E

E

sup
f∈F

1
n

n∑
j=1

σjf(Xj)

∣∣∣∣∣∣ Xn
1


= 1
n

E

E

 sup
v∈F(Xn

1 )

n∑
j=1

σjvj

∣∣∣∣∣∣ Xn
1


≤

√
2 log ΠF (n)

n
(Lemma 1)

≤

√
2V log en

V

n
, (Sauer’s Lemma),

where the first inequality bounded the conditional expectation via Massart’s finite class lemma
(Lemma 1) with r =

√
n.

By combining the above result with Theorem 3, we have the following theorem.

Theorem 4. Let F be a VC class of VC dimension V . Let f̂ be any ERM estimator and let f∗ be
the risk minimizer over F . Then with probability at least 1− δ,

R(f̂) ≤ R(f∗) + 2

√
2V log en

V

n
+

√
2 log 2

δ

n
.

The above result is equivalent to the excess risk bound we previously derived for VC classes.
Using a technique called chaining, which sadly will not be covered in this course, one can actually
obtain an improved bound on the Rademacher complexity of VC classes which in turn yields an
improved excess risk bound:

Theorem 5. Let F be a VC class of VC dimension V . Then

Rn(F) = O

√V

n

 .
Note that the logarithmic factor present in our earlier bound has now been eliminated. The

above bound thus serves as a real improvement and yields a strictly better excess risk bound than
what we had derived a few lectures ago. The bound provided by Theorem 5 is based on a much
more intricate analysis; the techniques used are outside of the scope of this course.

3.1 A computable upper bound

Remarkably, it is possible to obtain a fully computable upper bound based only the empirical
Rademacher complexity of a class. This result follows by observing that, under our bounded loss
assumption, R̂n(LF ) satisfies the bounded differences property with cj = b

n for j ∈ [n]. Therefore,
with probability at least 1− δ, it holds that

Rn(LF ) ≤ R̂n(LF ) + b

√
log 1

δ

2n .
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Also, precisely the same argument can be applied if we now draw a sample σ1, . . . , σn of independent
Rademacher random variables and avoid taking the expectation over σ1, . . . , σn; that is, with
probability at least 1− δ (now also over the draw of σ1, . . . , σn), it holds that

Rn(LF ) ≤ sup
f∈F

1
n

n∑
j=1

σj`f (Zj) + b

√
log 1

δ

2n .

By applying Theorem 2 and the above inequality, both with their respective δ set to δ/2, we
have the following fully observable and in-principle-computable risk bound.

Theorem 6. Let f̂ be any estimator. Assume that `f (Z) takes values in [0, b] for all f ∈ F . Then
with probability at least 1− δ,

E [`f (Z)] ≤ 1
n

n∑
j=1

`f (Zj) + 2R̂n(LF ) + b

√
2 log 2

δ

n
.

In addition, if σ1, . . . , σn are independent Rademacher random variables, then with probability at
least 1− δ over both the training sample and σ1, . . . , σn,

E [`f (Z)] ≤ 1
n

n∑
j=1

`f (Zj) + 2 sup
f∈F

1
n

n∑
j=1

σj`f (Zj) + b

√
2 log 2

δ

n
.

Applying our arguments from above in the case of classification, the first result holds in the case
of classification with 2R̂n(LF ) replaced by R̂n(F) and b = 1 (and with the analogous modification
for the second result).

3.2 Estimating Rademacher complexity from data

Consider the classification variant of the second part of Theorem 6, so that we have with probability
at least 1− δ,

E
[
1
[
f̂(X) 6= Y

]]
≤ 1
n

n∑
j=1

1
[
f̂(Xj) 6= Yj

]
+ sup
f∈F

1
n

n∑
j=1

σjf(Xj) +

√
2 log 2

δ

n
.

If we can efficiently compute (or at least approximate) the supremum, then we can precisely quantify
(at least with high probability) the gap between the risk of ERM and the risk of f∗.

This is indeed possible, at least if we can efficiently compute ERM itself. To see this, observe
that

sup
f∈F

1
n

n∑
j=1

σjf(Xj) = 2 sup
f∈F

1
n

n∑
j=1

(1
2 −

1− σjf(Xj)
2

)

= 1 + 2 sup
f∈F

1
n

n∑
j=1
−1− σjf(Xj)

2

= 1− 2 inf
f∈F

1
n

n∑
j=1

1− σjf(Xj)
2

= 1− 2 inf
f∈F

1
n

n∑
j=1

1 [f(Xj) 6= σj ] .

Computing the infimum is of course equivalent to computing the empirical risk of ERM with the
random signs taking the role of the labels.
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4 Properties of Rademacher complexity
We now study a few properties of Rademacher complexity which will be useful in the coming
lectures, including our analysis of support vector machines.

Property 1 (Affine transformations). For a set A and c, b ∈ R, define cA + b as the set {ca + b :
a ∈ A}. Then

R̂n(cF + b) = cR̂n(F).

The proof is simple and is left as an exercise.

Property 2 (Convex hull). Let conv(F) be the convex hull of F , the set of all convex combinations
of functions from F . Then

R̂n(conv(F)) = R̂n(F).

For simplicity, we prove this for the case of finite F with |F| = N . Denote by ∆ the (N − 1)-
simplex over N outcomes, defined as {α ∈ RN+ :

∑N
i=1 αi = 1}. Observe that

R̂n(conv(F)) = Eσ

 sup
f∈conv(F)

1
n

n∑
j=1

σjf(Xj)


= Eσ

sup
α∈∆

1
n

n∑
j=1

σj

N∑
i=1

αifi(Xj)

 .
Now, for any σ,

sup
α∈∆

1
n

n∑
j=1

σj ·
(

N∑
i=1

αifi(Xj)
)

= sup
α∈∆

N∑
i=1

αi ·

 1
n

n∑
j=1

σjfi(Xj)


= sup

f∈F

1
n

n∑
j=1

σjf(Xj)

= R̂n(F).

Property 3 (Sums). For any classes F and G,

R̂n(F + G) ≤ R̂n(F) + R̂n(G).

The proof is straightforward.

Property 4 (Composition with Lipschitz functions). Let φ1, . . . , φn be functions from R to R with
respective Lipschitz constants L1, . . . , Ln. Then

Eσ

sup
f∈F

1
n

n∑
j=1

σjφj(f(Xj))

 ≤ Eσ

sup
f∈F

1
n

n∑
j=1

σjLjf(Xj)

 .
We typically will be interested in the example φj(f(xj)) = `(yj , f(xj)), which is L-Lipschitz when-
ever ` is L-Lipschitz in its second argument; note that φj carries the information about label yj .
This example is so important that we give it its own property:
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Property 5 (Lipschitz losses). If ` : X × Y → R is L-Lipschitz in its second argument, then

R̂n(LF ) ≤ LR̂n(F).

Example 1 (Squared loss). Let ` be squared loss, so that `(y, f(x)) = (y − f(x))2. Assume that
x and y satisfy |y| ≤ C and |f(x)| ≤ C for all f ∈ F . Then for any f, g ∈ F ,∣∣∣(y − f(x))2 − (y − g(x))2

∣∣∣ =
∣∣∣f2(x)− g2(x)− 2y(f(x)− g(x))

∣∣∣
=
∣∣(f(x)− g(x)) (f(x) + g(x)− 2y)

∣∣
≤ 4C |f(x)− g(x)| ,

and so ` is L-Lipschitz in its second argument with L = 4C.

The historical predecessor of the last two properties is a result of Ledoux and Talagrand (1991)
known as the Ledoux-Talagrand contraction inequality. The scope of their result is much wider
(and, in particular, it applies to a stronger notion of Rademacher complexity that takes the absolute
value of the Rademacher-weighted summation), but consequently their result has a multiplicative
factor of 2 on the RHS and it requires the stronger assumption that, for each j ∈ [n], we have
φj(0) = 0. The version shown here, namely Property 4, is due to Meir and Zhang (2003).2

At the end of these lecture notes is a proof of Property 4; the proof is taken from Meir and
Zhang (2003) but is less terse than the version appearing in that paper.

5 Bounding Rademacher complexity for linear predictors
In light of Example 1, for linear regression with squared loss and bounded data and bounded
predictions, we almost have an explicit risk bound. The only remaining step is to bound the
(empirical) Rademacher complexity of the class of predictors.

Lemma 2. Let F be a class of linear predictors, defined as F = {fw : w ∈ Rd, ‖w‖2 ≤ B}, with
fw(x) = 〈w, x〉. Let x1, . . . , xn ∈ Rd, and define R := maxj∈[n] ‖xj‖2. Then

R̂n(F) ≤ BR√
n
.

2Their result seems to be less well-known in the machine learning community and has been re-invented by a few
authors even 10 years after it was originally proved!

9



Proof.

R̂n(F) = Eσ sup
fw∈F

1
n

n∑
j=1

σjfw(xj)

= Eσ sup
w:‖w‖2≤B

1
n

n∑
j=1

σj〈w, xj〉

= 1
n

Eσ sup
w:‖w‖2≤B

〈
w,

n∑
j=1

σjxj

〉

= B

n
Eσ

∥∥∥∥∥∥
n∑
j=1

σjxj

∥∥∥∥∥∥
2

(take w in the direction
n∑
j=1

σjxj)

≤ B

n

Eσ

∥∥∥∥∥∥
n∑
j=1

σjxj

∥∥∥∥∥∥
2

2


1/2

(Jensen’s inequality + concavity of x 7→
√
x)

= B

n

Eσ

n∑
i=1

n∑
j=1

σiσj〈xi, xj〉

1/2

≤ B

n

 n∑
j=1
‖xj‖22

1/2

(σ2
j = 1 and independence of σj and σi for i 6= j)

≤ BR√
n
.
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Proof (of Property 4). For legibility, let Φj(f) denote φj(f(Xj)) and let Ψj(f) denote f(Xj). We
claim that for any function c : F → R,

Eσ1,...,σn

sup
f∈F

c(f) +
n∑
j=1

σjΦj(f)


 ≤ Eσ1,...,σn

sup
f∈F

c(f) +
n∑
j=1

σjLjΨj(f)


 .

The proof is by induction. The result clearly holds for k = 0. Now, assume that the result
holds for k = n− 1. We prove that the result holds for n. Observe that

Eσ1,...,σn

sup
f∈F

c(f) +
n∑
j=1

σjΦj(f)




= 1
2 Eσ1,...,σn−1

 sup
f1∈F

c(f1) +
n−1∑
j=1

σjΦj(f1) + Φn(f1)




+ 1
2 Eσ1,...,σn−1

 sup
f2∈F

c(f2) +
n−1∑
j=1

σjΦj(f2)− Φn(f2)




= Eσ1,...,σn−1

 sup
f1,f2∈F

c(f1) + c(f2)
2 +

n−1∑
j=1

σj
Φj(f1) + Φj(f2)

2 + Φn(f1)− Φn(f2)
2


 .

Now, for any (f1, f2) pair, if Φn(f1) < Φn(f2), swapping them to ensures that Φn(f1) ≥ Φn(f2).
Thus, the above is equal to

Eσ1,...,σn−1

 sup
f1,f2∈F

c(f1) + c(f2)
2 +

n−1∑
j=1

σj
Φj(f1) + Φj(f2)

2 + |Φn(f1)− Φn(f2)|
2


 . (3)

Next, unpacking definitions and by the Lj-Lipschitz property of φj , we have

|Φn(f1)− Φn(f2)| ≤ Lj |Ψ(f1)−Ψ(f2)| ,

and so (3) is at most

Eσ1,...,σn−1

 sup
f1,f2∈F

c(f1) + c(f2)
2 +

n−1∑
j=1

σj
Φj(f1) + Φj(f2)

2 + Ln
|Ψn(f1)−Ψn(f2)|

2


 ,

which, by the earlier swapping argument for (f1, f2), is equal to

Eσ1,...,σn−1

 sup
f1,f2∈F

c(f1) + c(f2)
2 +

n−1∑
j=1

σj
Φj(f1) + Φj(f2)

2 + Ln
Ψn(f1)−Ψn(f2)

2


 ,

which is equal to

Eσn

Eσ1,...,σn−1

sup
f∈F

(c(f) + σnLnΨn(f)) +
n−1∑
j=1

σjΦj(f)


 .

The result holds by the induction hypothesis.
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