
Machine Learning Theory (CSC 482A/581B) - Lecture 13

Nishant Mehta

1 Strong and Weak Learnability
Over the next few lectures, we will gain a deeper understanding of PAC learning by studying
boosting and, in particular, AdaBoost.

Near the beginning of this course, we defined (efficient)1 PAC learnability as follows:

There is an algorithm A such that, for any c ∈ C, any distribution P over X , for all
ε > 0, and all δ ∈ (0, 1), if A is given access to examples drawn from P and labeled
according to c, then it outputs a hypothesis f̂ for which, with probability at least 1− δ,

PrX∼P
(
f̂(X) 6= c(X)

)
≤ ε;

moreover, the algorithm’s runtime must be polynomial in 1
ε and 1

δ (and also polynomial
in the dimension of the input d, though we’ll forego mentioning this latter requirement
as it is orthogonal to our current study).

We will use the term strong learnability to refer to the PAC learnability of a concept class in the
above sense. Consider now the following two weakenings of the requirements of strong learnability:

1. Rather than needing to handle all ε, instead the algorithm only needs to obtain risk bounded
by a constant ε0;

2. Rather than needing to handle all δ, the algorithm only needs to succeed in satisfying the
risk bound with probability at least δ0 for some constant δ0.

Under the above two weaker requirements, we now only require the algorithm’s runtime to be
polynomial in d (which, again, we will not discuss further).

Clearly, any algorithm can meet the first weakened requirement for ε0 = 1/2 (just flip a fair
coin to predict the label), and so to make the requirement meaningful, we assume that ε0 is better
than 1/2 by some “edge” γ > 0, so that ε0 = 1

2 − γ.
Formally, we say that a concept class C is weakly learnable if:

There is an algorithm A, γ > 0, and δ0 ∈ (0, 1) such that, for any c ∈ C and any
distribution P over X , if A is given n0 examples drawn from P and labeled according
to c, then it outputs a hypothesis f̂ for which, with probability at least δ0,

PrX∼P
(
f̂(X) 6= c(X)

)
≤ 1

2 − γ;

here, although n0 may depend on γ and δ0, the latter are considered constant and so
n0 itself is considered a constant.

1We will implicitly assume efficiency while studying boosting.

1



Michael Kearns and Leslie Valiant developed the concept of weak learnability, and they posed
the question of whether weak learnability is equivalent to strong learnability: that is, given a
weak learning algorithm A which just predicts better than chance with non-negligible probability,
can such an algorithm be boosted so that with arbitrarily high probability it obtains arbitrarily
small risk (with the usual polynomial sample complexity requirements in 1

ε and 1
δ ). A boosting

scheme proceeds by repeatedly running the weak learner on different training samples and somehow
aggregating all of the learned “weak hypotheses”.

In 1989 — not long after the question was posed — Robert Schapire answered this question in
the affirmative: he devised the first boosting scheme which uses a number of samples polynomial
in 1

ε and 1
δ and which is efficient whenever the underlying weak learning algorithm is efficient.

In 1990, Yoav Freund developed a drastically different and (more efficient) algorithm, boost-by-
majority, which is of interest in its own right. Finally, in 1995, Freund and Schapire developed
AdaBoost. Whereas the previous two algorithms could only be run with knowledge of the weak
learner’s edge γ, AdaBoost is adaptive: it can be run without knowledge of γ and actually adapts to
the edge obtained in each call to the weak learner (which often exceeds γ). Freund and Schapire’s
work on AdaBoost ultimately won them the Gödel Prize.

2 Boosting the confidence
It turns out that all of the real work in developing a boosting algorithm is in boosting the accuracy
from 1

2 −γ to 1−ε for arbitrarily small ε. Boosting the confidence of a learner that already obtains
risk at most ε with some constant probability is much easier. To see this, suppose that we have
a learning algorithm which with positive constant probability δ0 obtains risk at most ε. Then via
repeated calls to the weak learner on fresh samples, it is simple to boost the confidence of this
guarantee to 1 − δ for arbitrarily small δ with an at most log 1

δ blowup in the sample complexity
and runtime of the algorithm. Working out the details will be left as an exercise in the next problem
set, but the main idea is this:

Let’s call a hypothesis ε-good if its risk is at most ε. Suppose that a learning algorithm
A, when called on a training sample of size n, returns an ε-good hypothesis with
probability at least δ0. If A is called k times on k independent training samples (each
of size n′), then the probability that none of the resulting k hypotheses is ε-good is at
most (1− δ0)k.

Therefore, in order to prove that weak learnability implies strong learnability, we may without
loss of generality assume that the weak learner already succeeds in obtaining risk at most ε0 with
probability at least 1−δ for arbitrarily small δ (at the price of the runtime being at most polynomial
in log 1

δ ). What about boosting the accuracy? This is where AdaBoost comes in.

2



3 Boosting the accuracy: AdaBoost
AdaBoost proceeds in rounds, constructing one weak hypothesis ht in each of T rounds. As a
precondition we assume that we are given:

• a training sample (x1, y1), . . . , (xn, yn);

• a weak learning algorithm A which weak learns C with edge γ and success probability δ0.

In round t of AdaBoost, the weak learner A is called on a reweighted version of the training
sample with weights specified by a distribution Dt over {1, . . . , n}. The weights are chosen carefully
to give more emphasis to examples which were misclassified in the past. By the weak learning
assumption, the weak learner will return some hypothesis ht for which

εt := Prj∼Dt

(
ht(xj) 6= yj

)
= 1

2 − γt

for some γt ≥ γ (with probability at least δ0). The algorithm is shown below.

Algorithm 1. AdaBoost

Set D1(j) = 1
n for j = 1, . . . , n

For t = 1, . . . , T :

• Call A on distribution Dt, obtaining hypothesis ht

• Set αt = 1
2 log 1−εt

εt

• For j = 1, . . . , n:

Dt+1(j) = Dt(j) · exp (−αtyjht(xj))
Zt

= Dt(j)
Zt

·
{
e−αt if ht = yj

eαt if ht 6= yj ,

where Zt is the normalization factor that renders Dt+1 a probability distribution

Output hypothesis: f̂ : x 7→ sgn
(

T∑
t=1

αtht(x)
)
.

For now, we will just think of αt as a learning rate; larger values of αt lead to more aggressive
updates to the distribution. In the analysis, we will see precisely why AdaBoost chooses the above
setting for αt.

One point begs for further clarification: how can a weak learner be run on a reweighted version
of the training sample? For many learning algorithms, it is natural to incorporate weights on the
training examples and to approximately minimize (up to error 1

2 −γ) the reweighted empirical risk;
in fact, this often can be done with complete certainty (not merely with high probability). Still,
for other weak learners that cannot incorporate weights, we can instead employ a technique called
boosting-by-resampling.

The idea behind boosting-by-resampling, taking the case of δ0 = 1/2 purely for simplicity, is
to sample n0 examples from Dt, feed these examples to A, and check whether or not the error

3



guarantee holds for the resulting hypothesis (note that it is indeed possible to verify the error
of the hypothesis!); it is guaranteed to hold with probability at least 1/2 by the weak learning
assumption. If it does not hold, simply try again with another sample of size n0. Continuing in this
fashion, the probability of k consecutive failures is at most 2−k, and by choosing k large enough,
we can wrap the probability of the unlucky event of k successive failures into the overall failure
probability of our strong learning algorithm; it will suffice to set k to be logarithmic in 1/δ.

4 Weak learners
Since we will be proving that weak learnability implies strong learnability, it is worth grounding
the idea of a weak learner via an example. Let’s take X to be a feature space for animals, with each
feature being a categorical variable. For instance, the first feature might be biped or quadruped,
the second might indicate the color (from some finite set), the third might be small or large, and
so on. A decision tree is a classifier for which each internal node is a decision node that inspects
a single feature, and depending on the value, an example is sent to one of finitely many child
nodes. This proceeds recursively until reaching a leaf node associated with a label, and this label
is then predicted. (I drew an example in class) The C4.5 algorithm is a highly successful method
for learning decision trees that has enjoyed widespread use. However, in terms of the theory, there
is still a large gap in our understanding of how to learn decision trees well.

A decision stump is a special case of a decision tree of height 1; a decision stump thus has only
one decision node. Given training data, it is trivial to efficiently identify a decision stump that
minimizes the training error: just try them all and pick the best one. Moreover, it is conceivable
that by inspecting one feature one may be able to obtain an edge γ over the baseline accuracy of
1
2 . Because of our ability to learn them efficiently and the plausibility that they can serve as weak
learners, decision stumps will form our running example of a weak learner.

Even though decision stumps are incredibly simple models, it turns out that boosted decision
stumps often outperform more sophisticated models like decision trees learned by C4.5.

(I showed some figures demonstrating this in class)

5 Empirical risk / consistency analysis for AdaBoost
Recall that our goal is to prove that weak learnability implies strong learnability. A first natural
step is to ensure that we have obtained low empirical risk on the sample. This guarantee is captured
by the following theorem:

Theorem 1. If AdaBoost is run for T rounds on a training sample of size n, then

1
n

n∑
j=1

1
[
f̂(Xj) 6= Yj

]
≤ exp

(
−2

T∑
t=1

γ2
t

)
.

Recall that

εt = Prj∼Dt (ht(Xj) 6= Yj) = 1
2 − γt.

A proof of Theorem 1 (which we did in class) can be found in Schapire’s lecture notes2.
Now, suppose that each γt ≥ γ; this can be arranged with high probability as explained below.

Then consistency must hold as soon as e−2Tγ2
< 1

n , i.e. as soon as T ≥ logn
2γ2 .

2http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0303.pdf.

4

http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0303.pdf


Now, let’s see how to ensure, with high probability over the internal randomization of the
algorithm, that each γt ≥ γ. Assume that A is a weak learner for C with edge γ > 0 and
success probability δ0 > 0, and consider running AdaBoost with boosting-by-resampling. That is,
in obtaining the weak hypothesis ht for each t ∈ [T ], we repeat the following procedure enough
times until either Step 3 succeeds or until we have repeated the procedure enough times where the
probability of every Step 3 failing is as small as desired:

Step 1. Resample from Dt: obtain a sample of size n0 from Dt.

Step 2. Call the weak learner on this sample, obtaining candidate hypothesis ht.

Step 3. Verify that γt ≥ γ.

Taking the union bound over [T ], we can also ensure that with high probability every γt ≥ γ. Thus,
by allowing for Ω

(
log T

δ

)
rounds of resampling for each t, we can ensure with high probability at

least 1−δ that each γt ≥ γ, which, by Theorem 1 with T ≥ logn
2γ2 implies (with the same probability)

that f̂ is consistent with c on the training sample.

5


	Strong and Weak Learnability
	Boosting the confidence
	Boosting the accuracy: AdaBoost
	Weak learners
	Empirical risk / consistency analysis for AdaBoost

