
Machine Learning Theory (CSC 482A/581B) - Lecture 14

Nishant Mehta

1 Risk guarantees for AdaBoost Compression bounds
Of course, ensuring consistency of AdaBoost’s weighted majority hypothesis f̂ on the training sam-
ple is only a first step. Our real goal is to ensure that PrX∼P

(
f̂(X) 6= c(X)

)
≤ ε with probability

at least 1− δ (with sample complexity polynomial in 1
ε and 1

δ).
It turns out that the boosting-by-resampling variant of AdaBoost is well-matched to a risk

analysis based on compression bounds: these are risk bounds based on compression schemes, which
we will now study. This is a bit of a detour, but near the end of this lecture we will reconnect
compression schemes to our analysis of AdaBoost and complete the proof that weak learnability
implies strong learnability.

1.1 Compression schemes

For any concept c ∈ C and any x ∈ X , let Lc(x) = (x, c(x)), so that Lc takes an example and
returns a labeled example. We extend Lc to sequences of examples xn = (x1, . . . , xn) ∈ X n via
Lc(xn) = ((x1, c(x1)), . . . , (xn, c(xn))). With this extension, Lc sends unlabeled samples to labeled
samples.

Definition 1. For a concept class C, a compression scheme with kernel size k is a pair of mappings,
the compression map

κ :
∞⋃
n=k

(X × Y)n → (X × Y)k

and the reconstruction map

ρ : (X × Y)k ×X → Y,

which satisfy the following properties:

• for all c ∈ C and all n ≥ k, the compression set κ(Lc(xn)) is a subsequence of Lc(xn) for all
xn ∈ X n;

• for all c ∈ C and all n ≥ k, for any xj ∈ xn, ρ(κ(Lc(xn)), xj) = c(xj).

In words, a compression map sends every finite labeled sample to a compression set that is a
size-k subset of that sample. Given the compression set of a labeled sample, the reconstruction
map can be viewed as a classifier f̂ρ,κ which consistently labels each example within the unlabeled
sample; that is, the hypothesis f̂ρ,κ : x 7→ ρ(κ(Lc(xn)), x) is consistent with c on the sample xn.

Compression schemes are interesting in their own right, and there are numerous examples of
compression schemes. We will study them in more detail later in this course. For now, let’s look
at one particularly simple example.

1

Example 1 (Axis-aligned rectangles). Take C to be the class of axis-aligned rectangles in R2. Given
any labeled sample, clearly the tightest rectangle that contains all the positively labeled examples
is consistent with the training sample. Moreover, we can reconstruct this rectangle using only 4
points (and in some cases even less): just choose the leftmost, rightmost, topmost, and bottommost
positive examples. Therefore, there is a compression scheme of size 4.

The existence of a finite-kernel compression scheme for a class C implies a remarkably-simple-
to-derive PAC-style risk bound.

Theorem 1. Let (κ, ρ) be a compression scheme for C with kernel size k. Suppose that X1, . . . , Xn

are drawn independently from P and labeled according to c ∈ C, and denote by f̂κ,ρ the hypothesis
defined as f̂κ,ρ : x 7→ ρ(κ(Lc(Xn)), x). With probability at least 1− δ,

PrX∼P
(
f̂κ,ρ(X) 6= c(X)

)
≤
k logn+ log 1

δ

n− k
.

Proof. Let T be the set of all cardinality-k subsets of {1, . . . , n}. Consider a fixed subset S ∈ T ,
and let XS denote the subsequence of examples (Xj)j∈S . Corresponding to S is a hypothesis

f̂S,ρ : x 7→ ρ(Lc(XS), x).

Observe that f̂S,ρ depends only on XS . Since XS is independent of X[n]\S , it also is true that f̂S,ρ
is independent of X[n]\S . Now, for each fixed S, the probability that f̂S,ρ has risk more than ε and
yet is consistent with c on X[n]\S is at most

(1− ε)n−k. (1)

Applying a union bound over all
(n
k

)
≤ nk elements of T , the probability that f̂κ,ρ(x) has risk more

than ε and yet is consistent with c on Xn is at most

nk(1− ε)n−k ≤ nke−(n−k)ε.

The result follows by inversion.

In our analysis of AdaBoost, we will see that we can encode each weak hypothesis ht using a
size-n0 subset of the training sample. Therefore, given T such subsets, we can encode all of the
weak hypotheses if we know which subset should encode which hypothesis.1 However, in the basic
compression scheme defined above, the compression map only returns a subsequence of the training
sample, and therefore it is not possible to determine which elements of the compression set should
be used to encode which weak hypothesis. If we could also encode a permutation of the compression
set, then we could appropriately permute the compression set and then take the first n0 examples
to encode h1, the second n0 examples to encode h2, and so on. A quick argument shows that we can
encode a permutation over k elements using log(k!) ≤ k log k bits. Encoding such a permutation
motivates an extended version of compression schemes.

1Technically, we cannot use a compression scheme as defined above to analyze AdaBoost for the following reason:
when using boosting-by-resampling, it is possible that, for a given j ∈ [n], the example (xj , yj) appears in the
compression set for some weak hypothesis ht multiple times; however, a subsequence of the training sample can only
include each point xj once. Therefore, we cannot necessarily encode ht using a subsequence of the training sample.
Moreover, the problem becomes even worse when we need to encode h1, . . . , hT using a single subsequence of the
training sample. There is a simple workaround, which involves instead allowing for repeats. Allowing for repeats
simply means that we need to consider nk possible compression sets, and since we already used the loose upper bound(

n
k

)
≤ nk in our proof of Theorem 1, that result holds even for this more general form of compression scheme. The

reason we looked at the subsequence-based definition of compression schemes is that this is the standard one that
appears in the literature.

2

Definition 2. For a concept class C, an extended compression scheme with kernel size k and side
information set I is a pair of mappings, the compression map

κ :
∞⋃
n=k

(X × Y)n → (X × Y)k × I

and the reconstruction map

ρ : (X × Y)k × I × X → Y,

which satisfy the following properties:

• for all c ∈ C and all n ≥ k, the compression set part of κ(Lc(xn)) is a subsequence of Lc(xn)
for all xn ∈ X n;

• for all c ∈ C and all n ≥ k, for any xj ∈ xn, ρ(κ(Lc(xn)), xj) = c(xj).

Theorem 2. Let (κ, ρ) be an extended compression scheme for C with kernel size k and side
information set I. Suppose that X1, . . . , Xn are drawn independently from P and labeled according
to c ∈ C, and denote by f̂κ,ρ the hypothesis defined as f̂κ,ρ : x 7→ ρ(κ(Lc(Xn)), x). With probability
at least 1− δ,

PrX∼P
(
f̂κ,ρ(X) 6= c(X)

)
≤

log |I|+ k logn+ log 1
δ

n− k
.

The proof is essentially the same as the proof for basic compression schemes. The only difference
is that we now run the argument in the proof of Theorem 1 but also for each fixed value of the side
information i ∈ I, yielding hypotheses f̂S,i,ρ, and so we also take the union bound over I.

1.2 Weak learnability implies strong learnability

As argued above, we can encode the T weak hypotheses learned by AdaBoost using T ·n0 examples;
however, the final hypothesis f̂ of AdaBoost also requires the weight variables α1, . . . , αT , since f̂
is the weighted majority predictor

x 7→ sgn
(

T∑
t=1

αtht(x)
)

;

therefore, we cannot immediately apply Theorem 2 to get a risk bound for AdaBoost. Suppose for
the time being that we instead predicted according to a simple majority2

x 7→ sgn
(

T∑
t=1

ht(x)
)
.

In this case, we can directly apply Theorem 2 to obtain a risk bound. To see this, we define an ex-
tended compression scheme as follows. For each t ∈ [T], let z(t) :=

(
(xjt,1 , yjt,1), . . . , (xjt,n0

, yjt,n0
)
)

be a subsequence of ((x1, y1), . . . , (xn, yn)) such that

A
(
z(t)
)

= ht. (2)

2To be precise, we are supposing that α1, . . . , αT do not need to be encoded because they all just so happened to
be equal to 1; this is cheating of course, since a priori this need not be the case!

3

Concatenate the subsequences z(1), . . . , z(T) and sort the resulting sequence so that the examples
appear in the same order as they appear in the training sample. The sorted sequence is then a
subsequence of the training sample. Let Π be the permutation which puts the examples back into
their original order (before this sorting).

We define the compression map κ to be the function which takes in the training sample and
outputs the sorted version of z(1), . . . , z(T) as the compression set and Π as the side information.
The side information set is thus the set of all permutations over T · n0 elements.

Next, we define the reconstruction map ρ. Observe that, given the compression set and Π,
we can reconstruct the concatenation of subsequences z(1), . . . , z(T). In light of (2), we also can
reconstruct h1, . . . , hT . Define the reconstruction map ρ to be the function which takes in the
compression set, Π, and an input x and outputs

sgn
(

T∑
t=1

ht(x)
)
.

Define k = T · n0 = n0 logn
2γ2 ; clearly, k = O(logn). Then, since γ and n0 are constants, we have

with probability at least 1− δ, the risk of the simple majority classifier is at most

k log k + k logn+ log 1
δ

n− k
= O

(
(logn)2 + log 1

δ

n

)
.

Thus, if we did not have to encode α1, . . . , αT , by choosing n to grow roughly as 1
ε (ignoring

logarithmic factors), we can ensure that the risk of the simple majority classifier is at most ε.

1.3 Upgraded version of analysis for AdaBoost

To obtain a risk bound for AdaBoost, we will use a hybrid approach that mixes compression schemes
with a VC dimension-type analysis. For the time being, suppose that S ∈ T (corresponding to a
compression set) and i ∈ I (corresponding to the side information) are fixed, inducing a sequence
of weak hypotheses h1, . . . , hT . Let’s consider the restricted class of hypotheses used by AdaBoost
for such fixed h1, . . . , hT .

Define the feature map ϕ as

ϕ(x) =

h1(x)
...

hT (x)

 .
Letting α = (α1, . . . , αT), observe that the hypothesis of AdaBoost is equal to x 7→ sgn(α ·ϕ(x))

for some α ∈ RT+. Thus, if h1, . . . , hT are fixed, then this hypothesis is a homogeneous linear
separator (also called a linear threshold function) for points in the new representation ϕ(x). In the
second problem set, you proved that the VC dimension of the class of general (i.e. not necessarily
homogeneous) halfspaces in T dimensions is T + 1. It turns out that the VC dimension of the
class of linear threshold functions in T dimensions is exactly T . Proving this latter VC dimension
result is considerably easier than the case of general halfspaces, but since the difference is just 1,
we will not cover a proof here. Thus, we have the following upper bound on the VC dimension of
the restricted class:

VCdim
({

sgn(α · ϕ(x) : α ∈ RT+
})

≤ VCdim
({

sgn(α · ϕ(x) : α ∈ RT
})

= T.

4

Now, for every fixed S and i, let FS,i be the corresponding restricted class of linear threshold
functions. We can thus decompose the class of hypotheses from which AdaBoost predicts into⋃

S∈T ,i∈I
FS,i,

where, we have VCdim(FS,i) ≤ T for all S and i.
Retracing through the proof of Theorem 2, we can replace our bound (1) on the probability that

a single hypothesis f̂S,i,ρ is consistent with the examples not in the compression set and yet has
risk exceeding ε with the probability that any hypothesis in FS,i is consistent with the examples
not in the compression set and yet has risk exceeding ε. For this, we use the following result from
Theorem 2 of Lecture 7:

Theorem 3. Let F ⊂ {−1, 1}X be a VC class with VCdim(F) = V , and let f̂ be an ERM classifier
(which, given a training sample, outputs a hypothesis in F that minimizes the empirical risk), and
let P be an arbitrary probability distribution P over X ×Y that satisfies Y = c(X) for some c ∈ F .

Then for any n ≥ V , and any ε > 0.

Pr
(
R(f̂) > ε

)
≤ 2

(2en
V

)V
e−nε/2.

Replacing (1) with 2
(

2e(n−k)
T

)T
e−(n−k)ε/2 (note that we use (n− k) instead of n because k of

the samples are used to define the function class FS,i itself!) and setting the failure probability
to δ

2 (since we also need to allow for boosting-by-resampling to fail with some probability δ
2),

it remains to solve for ε in the following expression to obtain a risk bound for AdaBoost (with
k = T · n0 = n0 logn

2γ2 as before):

k! · nk · 2
(2e(n− k)

T

)T
e−(n−k)ε/2 = δ

2 .

We thus have the following strong learning guarantee for AdaBoost:

Theorem 4. Assume that n ≥ n0 logn
γ2 , so that n − k ≥ n

2 . Let AdaBoost be run for T = logn
γ2

rounds with a weak learner A for concept class C with edge γ and success probability δ0, and further
assume that to obtain each weak hypothesis ht, we make Ω

(
log T

δ

)
resampling attempts.

Then with probability at least 1− δ, the risk of the hypothesis f̂ returned by AdaBoost is at most

PrX∼P
(
f̂(X) 6= c(X)

)
= O

(
(logn)2 + log 1

δ

n

)
,

where the O(·) notation hides the constants n0 and γ.

By taking the sample size n to grow only slightly superlinearly (and hence polynomially) in 1
ε (it

suffices to let n grow as 1
ε , ignoring log factors), and by observing that the amount of computation

used also is polynomial in 1
ε and 1

δ (in fact, it only grows as log 1
δ , we see that weak learnability

implies strong learnability.

5

	Risk guarantees for AdaBoost Compression bounds
	Compression schemes
	Weak learnability implies strong learnability
	Upgraded version of analysis for AdaBoost

