
Machine Learning Theory (CSC 482A/581B) - Lecture 15

Nishant Mehta

1 AdaBoost and Margins
We thus far have seen that weak learnability implies strong learnability, and in the process we
developed a PAC learning guarantee for AdaBoost. The risk bound we proved increases with the
number of rounds T for which AdaBoost is run, suggesting that if we run AdaBoost for long enough
it eventually will overfit; recall that our bound scaled with T because of a VC dimension-based
argument we used for the class of linear threshold functions over T dimensions. On the other hand,
in numerous examples it has been observed that when AdaBoost is run far beyond the point when
it has first obtained zero training error, its test error continues to improve. (I showed a figure in
class that demonstrates this phenomenon).

We will now explore the margins explanation for why AdaBoost often does not overfit for
seemingly excessively large T . The idea is that even after AdaBoost has obtained zero training
error, as T increases, the weighted majority vote predictor becomes more and more confident in
its predictions. The intuitive idea of the predictor being confident in making a prediction on an
example x can be formalized as follows: consider the difference between the proportion of mass
assigned to hypotheses predicting −1 on this example and the proportion of mass assigned to weak
hypotheses predicting +1 on this example; then the greater this difference, the more confident the
prediction. For any example, this difference will be called the margin. There are well-documented
examples where the distribution of the AdaBoost’s margins for the training examples continues to
improve as T increases. (I showed a figure with such an example in class).

The margins explanation for why AdaBoost tends not to overfit is based on two arguments.
First, AdaBoost improves the margin distribution of the training examples. Second, voting methods
(like AdaBoost) that predict with good margin admit risk bounds that do not grow with T but
instead scale inversely with the margin.

2 AdaBoost and the empirical margin distribution
As before, let εt and γt be defined such that

εt = Prj∼Dt (ht(Xj) 6= Yj) = 1
2 − γt.

In conducting a margin-based analysis, it will be convenient to normalize the weights that appear
in AdaBoost’s weighted majority predictor. To this end, we define for each t ∈ [T ]

at = αt∑T
s=1 αs

,

so that these new weights sum to 1.
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Now, since the sign function is invariant to positive scaling, we can re-express AdaBoost’s
hypothesis in terms of the new weights as

f̂(x) = sgn (ĝ(x)) (1)

for

ĝ(xj) =
T∑
t=1

atht(xj) =
∑T
t=1 αtht(xj)∑T

t=1 αt

The next theorem provides an upper bound on the fraction of points in the training sample for
which ĝ does not achieve margin exceeding a prescribed threshold.

Theorem 1. Let θ ≥ 0. If AdaBoost is run for T rounds on a training sample of size n, then

1
n

n∑
j=1

1 [Yj ĝ(Xj) ≤ θ] ≤
T∏
t=1

√
(1 + 2γt)1+θ(1− 2γt)1−θ.

If we take θ = 0, the above result recovers our bound on AdaBoost’s empirical risk under zero-
one loss, where, as an intermediate step, we had obtained the upper bound

∏T
t=1

√
1− 4γ2

t . The
proof of the above theorem is very similar to the proof for the special case of θ = 0.

Proof of Theorem 1. First, for any z ∈ R, observe that 1 [z ≥ 0] ≤ ez. Therefore, for any j ∈ [n],

1 [Yj ĝ(Xj) ≤ θ] = 1 [θ − Yj ĝ(Xj) ≥ 0]

= 1
[
θ − Yj

T∑
t=1

atht(Xj) ≥ 0
]

= 1
[
θ

T∑
t=1

αt − Yj
T∑
t=1

αtht(Xj) ≥ 0
]

≤ exp
(
θ

T∑
t=1

αt − Yj
T∑
t=1

αtht(Xj)
)
.

Therefore,

1
n

n∑
j=1

1 [Yj ĝ(Xj) ≤ θ]

≤ 1
n

n∑
j=1

exp
(
θ

T∑
t=1

αt − Yj
T∑
t=1

αtht(Xj)
)

= exp
(
θ

T∑
t=1

αt

)
· 1
n

n∑
j=1

exp
(
−Yj

T∑
t=1

αtht(Xj)
)

= exp
(
θ

T∑
t=1

αt

)
·
T∏
t=1

Zt

= exp
(
θ

T∑
t=1

αt

)
·
T∏
t=1

√
(1− 4γ2

t ),
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where we proved the last two equalities when analyzing the rate at which AdaBoost’s training error
(under zero-one loss) converges to zero. Plugging in the value of αt used by AdaBoost,

αt = 1
2 log 1− εt

εt
= 1

2 log 1 + 2γt
1− 2γt

,

yields

T∏
t=1

(1 + 2γt
1− 2γt

)θ/2√
1− 4γ2

t

=
T∏
t=1

√(1 + 2γt
1− 2γt

)θ
(1 + 2γt)(1− 2γt)

=
T∏
t=1

√
(1 + 2γt)1+θ · (1− 2γt)1−θ.

To get a feel for the upper bound in Theorem 1, let’s consider the pessimistic special case where
γt = γ for all t ∈ [T ], so that the weak learning assumption is exactly satisfied with no slack. Then
the upper bound reduces to (

(1 + 2γ)1+θ(1− 2γ)1−θ
)T/2

.

In the special case of θ = 0, we see that the above quantity decays to zero exponentially in T as
long as γ > 0. How large can θ be before exponential decay fails to occur? To answer this, we need
only find, for fixed γ > 0, the largest θ such that

(1 + 2γ)1+θ(1− 2γ)1−θ < 1.

Isolating θ yields the upper bound

θ <
− log(1− 4γ2)

log 1+2γ
1−2γ

.

This complicated inequality is perhaps a less than satisfying answer for how large θ can be;
however, in the range 0 ≤ γ ≤ 1

2 , it holds that

γ ≤ − log(1− 4γ2)
log 1+2γ

1−2γ
≤ 2γ.

(I demonstrated this via a plot in class)
Thus, as long as θ < γ, the empirical θ-margin error decays to zero exponentially quickly in T ,

and moreover, this upper bound is tight up to a factor of 2.
Next, we will see risk bounds for AdaBoost which motivate taking θ to be as large as possible,

in perfect analogy to the margin bounds we developed for support vector machines.
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3 Margin bounds for ensemble methods
When we studied margin bounds for SVM’s, we saw the following Rademacher complexity-based
bound on the risk of a classifier under zero-one loss:

Theorem 2. Let F be a class of real-valued functions. Then for any θ > 0, with probability at
least 1− δ, for all f ∈ F ,

E [1 [Y f(x) ≤ 0]] ≤ 1
n

n∑
j=1

1 [Yjf(Xj) < θ] +2
θ
Rn(F) +

√
log 1

δ

2n .

Now, using (1), Adaboost’s real-valued hypothesis (prior to taking the sign) ĝ(x) can be ex-
pressed as a convex combination of weak hypotheses h1, . . . , hT . Let us suppose that each ht belongs
to a set of hypotheses H with VCdim(H) = V < ∞, a reasonable state of affairs since these are
weak hypotheses. Then the function ĝ belongs to the class F = conv(H). Next, recall that for any
class H,

Rn(conv(H)) = Rn(H). (2)

Lastly, since H is a set of classifiers, we can upper bound Rn(H) using the VC dimension as1

Rn(H) ≤

√
2V log en

V

n
. (3)

Applying Theorem 3 with Rn(F) = Rn(conv(H)) bounded from (2) and (3), we have the
following margin bound for classifiers that predict according to the convex hull of a set of classifiers
of finite VC dimension.

Theorem 3. Let H be a set of classifiers with VCdim(H) = V and let F = conv(H). Then, for
any θ > 0, with probability at least 1− δ, for all f ∈ F ,

E [1 [Y f(x) ≤ 0]] ≤ 1
n

n∑
j=1

1 [Yjf(Xj) < θ] +2
θ

√
2V log en

V

n
+

√
log 1

δ

2n .

The above theorem applies to any ensemble predictor that predicts according to a weighted ma-
jority vote of classifiers belonging to a VC-class H. Therefore, it applies in particular to AdaBoost.
Moreover, if θ < γ, the empirical risk with respect to the θ-margin error decays exponentially
quickly as then number of rounds for which AdaBoost runs increases, and thus for sufficiently large
T and taking θ = γ

2 , the bound in the above theorem becomes

E [1 [Y f(x) ≤ 0]] ≤ 4
γ

√
2V log en

V

n
+

√
log 1

δ

2n .

Technically, we should not be entirely satisfied with the above result: in the realizable case, we
should hope to dispense with the square root to obtain a faster convergence rate with respect to n.
This can be accomplished by a more refined analysis.

1We proved this bound in lecture 14 (see the top of page 6 in the lecture notes for Lectures 13–15).
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