
Machine Learning Theory (CSC 482A/581B) - Lecture 16

Nishant Mehta

1 Occam’s razor bounds
Thus far in this course, we have obtained risk bounds via a uniform convergence approach: we have
proved that with high probability, uniformly over all hypotheses in some set, the actual risk is not
much greater than the empirical risk. Specifically, we showed guarantees of the form:

With probability at least 1− δ, for all f ∈ F :

PrX∼P (f(X) 6= Y ) ≤ 1
n

n∑
j=1

1 [f(Xj) 6= Yj ] +ε.

In this type of bound, ε depends on n, δ, and F ; however, regardless of the hypothesis f being
considered, the same quantity ε always appears in the above bound. It is in this sense that we refer
to this as a uniform bound.

How did we obtain bounds of this form? In the case of a finite set of hypotheses F , we essentially
just applied Hoeffding’s inequality (in the agnostic case) or a Binomial tail bound (in the realizable
case) to show concentration of the empirical risk around the actual risk of a single hypothesis, and
then we used the union bound to ensure such concentration holds for all hypotheses simultaneously.

In this lecture and the next, we will focus on non-uniform bounds. The first type of bound we
will explore takes the form:

With probability at least 1− δ, for all f ∈ F :

PrX∼P (f(X) 6= Y ) ≤ 1
n

n∑
j=1

1 [f(Xj) 6= Yj ] +ε(f).

In the above bound, ε has now been replaced with a quantity ε(f) that can vary with each individual
hypothesis. As we will see, the reason for letting ε vary with f is that we can obtain a better bound
than the uniform case for some f . This improvement can be useful to a practitioner that has prior
beliefs over which hypotheses are more likely to be output by a learning algorithm However, this
improvement is not for free: the price paid will be that the bound necessarily worsens for other
f . This trade-off derives from the fundamental connection between prefix codes and probability
distributions which we will explore below.

We now develop a nonuniform bound called an Occam’s razor bound (or Occam bound) for
short. For any hypothesis f , denote by R(f) the risk of f under zero-one loss; that is,

R(f) = Pr(X,Y )∼P (f(X) 6= Y ) .

Also, denote by R̂n(f) the empirical risk of f under zero-one loss, so that

R̂n(f) = 1
n

n∑
j=1

1 [f(Xj) 6= Yj ] .
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Theorem 1. Let Π be a probability distribution over F . If (X1, Y1), . . . , (Xn, Yn) are independently
distributed according to probability distribution P , then with probability at least 1−δ, for all f ∈ F ,

R(f) ≤ R̂n(f) +

√√√√2R(f)
(
log 1

Π(f) + log 1
δ

)
n

.

Proof. First, consider a fixed f ∈ F . We will use the relative Chernoff bound below to upper bound
R(f) by the empirical risk of f :

Let Z1, . . . , Zn be independent Bernoulli random variables and define Sn =
∑n
j=1 Zj .

Then for ε ∈ (0, 1],

Pr (Sn ≤ (1− ε) E[Sn]) ≤ e−ε2 E[Sn]/2.

To apply this result, we take Zj = 1 [f(Xj) 6= Yj ] for j ∈ [n] and scale the expression inside the
probability by 1

n , yielding

Pr
(
R̂n(f) ≤ R(f)− εR(f)

)
≤ e−nε2R(f)/2.

Setting the RHS to δf and solving for ε yields

ε =

√√√√2 log 1
δf

nR(f) .

Plugging in ε and rearranging, we have the following high probability guarantee for hypothesis f :

Pr

R(f) > R̂n(f) +

√
2R(f) log 1

δf

n

 ≤ δf . (1)

So far, the above has not really used any new ideas aside from resorting to a relative Chernoff
bound. The key novelty of the Occam bound is what we introduce next; the following procedure can
be thought of as a weighted union bound. For each f ∈ F , apply the bound (1) with δf = Π(f) · δ.
Then the result follows by observing that

Pr

∃f ∈ F : R(f) > R̂n(f) +

√√√√2R(f)
(
log 1

Π(f) + log 1
δ

)
n



≤
∑
f∈F

Pr

R(f) > R̂n(f) +

√√√√2R(f)
(
log 1

Π(f) + log 1
δ

)
n


≤
∑
f∈F

Π(f)δ

= δ.
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In applying the above bound, it is critical that the distribution Π is chosen before seeing the
training sample. In this sense, we can think of Π as a prior distribution. Note, however, that Π
need not be viewed as a Bayesian prior; unlike in Bayesian statistics, Theorem 1 is correct for any
choice of Π, as long as Π is independent of the training sample.

In the past, we have used the special case of a uniform prior distribution Π(f) = 1
|F| and the

coarse upper bound R(f) ≤ 1, which recovers the familiar bound:

With probability at least 1− δ, for all f ∈ F ,

R(f) ≤ R̂n(f) +

√√√√2
(
log |F|+ log 1

δ

)
n

.

The bound in Theorem 1 is more powerful though. Suppose that a practitioner believes that
some hypotheses are far more likely than others to be returned by their learning algorithm. They
can reflect this prior knowledge by selecting a (data-independent!) prior distribution that places
more weight on such hypotheses. Then, if they are lucky, the algorithm will indeed return a
hypothesis for which Π(f) is large and hence for which log 1

Π(f) is small. In this lucky event, the
practitioner can apply the bound in Theorem 1 for only this f , and the complexity price paid in the
bound will be only log 1

Π(f) rather than the larger price of log |F| (which they would have paid had
they selected a uniform prior). As we will soon see, the “price” log 1

Π(f) can be naturally interpreted
as the length (in bits) used to encode hypothesis f using a code that is based on the probability
distribution Π.

2 Codes, probability distributions, and prediction under log loss
As already hinted when discussing the Occam bound, there is a fundamental connection between
prefix codes and probability distributions.

Let X be a finite1 sample space and let B∗ be the set of all binary strings of any length. A
prefix code for X is a mapping C : X → B∗ which has the property that, for all outcomes x, y ∈ X ,
the code word C(x) is not a prefix of the code word C(y). Why should we restrict to prefix codes?
These codes turn out to be the only type of codes for which messages formed by code words can
be unambiguously decoded.

Given a code C and an outcome x ∈ X , we denote the length (in bits) of the code word C(x)
by LC(x).

We say that a probability distribution P over X is defective if
∑
x∈X P (x) < 1. Any defective

distribution can be made into a proper (i.e. non-defective) probability distribution by augmenting
the sample space with an additional dummy symbol� and setting P (�) such that

∑
x∈X∪{�} P (x) =

1.
We say that a prefix code C is complete if there is no code C ′ such that both of the following

properties hold:

• for all x ∈ X , LC′(x) ≤ LC(x);

• there exists an x ∈ X for which LC′(x) < LC(x).

Given a prefix code C for X , there exists a (possibly defective) probability distribution P over
X for which − logP (x) = Lc(X). There is a precise connection between probability distributions

1X is taken to be finite purely for simplicity
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and complete prefix codes. A prefix code is complete if and only if its corresponding probability
distribution P is not defective. We will not prove this fact here.

It turns out that if we slightly generalize the notion of codes and codelength, there is a converse
as well. Suppose that we allow for codes that can have non-integer codelengths; technically, such
codes do not exist, so this is an idealization. However, if we speak only in terms of code lengths,
without actually ever needing to implement the code, this will not cause a problem. From now on,
we allow these more general codes, and we will only ever use the codelength function LC rather
than directly using the code C.

Using these idealized codes, we have the desired converse: given a probability distribution P
over X , there exists a prefix code C for X such that, for all x ∈ X , LC(x) = − logP (x).

Thus, using these idealized codes, there is a fundamental correspondence between the codelength
functions of (complete) prefix codes and probability distributions:

• given any codelength function LC for codes over X , there is a probability distribution P over
X defined as P (x) = 2−LC(x);

• given any probability distribution P over X , there is a codelength function LC(X) defined as
LC(X) = − logP (x).

By allowing for idealized codes, we can also extend the notion of a prefix code being complete.
The Kraft inequality states that for any (usual / non-idealized) prefix code C over X ,∑

x∈X
2−LC(x) ≤ 1. (2)

We will say that an idealized code is complete when
∑
x∈X 2−LC(x) = 1, so that there is no room

for improvement.
Consider a game that unrolls according to the following protocol:

1. Alice selects a probability distribution P over X .

2. Bob selects a code C over X that he will use to encodes samples from P .

3. Alice then draws a sample X ∼ P and Bob encodes X, paying a price of LC(X) bits.

In the above game, Bob’s goal is to minimize the expected number of bits he uses to encode
samples from P . That is, Bob seeks to minimize

EX∼P [LC(X)] .

For what code C is the above objective minimized? To answer this question, we will leverage
the bijection between codelength functions and probability distributions. Bob’s selection of some
code C is equivalent to his selection of a probability distribution Q defined via − logQ(x) = LC(x).
Bob’s goal is then to select a probability distribution Q that minimizes

EX∼P [− logQ(X)] .

Expressed in this way, the problem of selecting a code that minimizes expected codelength is
equivalent to the problem of selecting a probability distribution that minimizes expected log loss.
There is thus a perfect correspondence to the problem of density estimation under log loss.

The optimal choice of Q turns out to be the distribution P that generated the data. That is,
we have the following lemma:
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Lemma 1. For any probability distributions P and Q over X ,

EX∼P [− logQ(X)]− EX∼P [− logP (X)] ≥ 0, (3)

and the inequality is strict whenever P 6= Q.

Proof. First, we rewrite the LHS as

EX∼P [− logQ(X)]− EX∼P [− logP (X)] = EX∼P
[
− log Q(X)

P (X)

]
.

Next, observe that x 7→ − log x is a strictly convex function. We will use the following property of
strictly convex functions. For any strictly convex function f : X → R and any distribution P over
X whose support contains at least at least two elements,

EX∼P [f(X)] > f(E[X]).

Using the above inequality with f : x 7→ − log x, we have

EX∼P
[
− log Q(X)

P (X)

]
≥ − log EX∼P

[
Q(X)
P (X)

]
= − log

∑
x∈X

Q(x) = 0,

and the inequality is strict whenever P 6= Q.

Thus, the (idealized) code that minimizes expected codelength has a codelength function for
which LC(x) = − logP (x).

Using the connection between minimizing expected codelength and density estimation under
log loss, we can interpret standard information-theoretic quantities like the entropy and relative
entropy.

When using distribution P to code outcomes drawn from P , the expected codelength is precisely
equal to the entropy of P .

Definition 1. The entropy of a probability distribution P over X is defined as

H(P ) = EX∼P [− logP (X)] = −
∑
x∈X

P (x) logP (X).

The notion of entropy can be generalized by allowing for possibly suboptimal codes based on
some distribution Q not necessarily equal to P . This gives rise to cross-entropy.

Definition 2. The cross-entropy between probability distributions P and Q over X is defined as

H(P,Q) = EX∼P [− logQ(X)] = −
∑
x∈X

P (x) logQ(X).

The cross-entropy between P andQ is thus the expected number of bits required to encode outcomes
from P using a code based on Q.

Finally, the difference (see the LHS of (3)) between the entropy of P and the cross entropy
between P and Q is known as the relative entropy of P relative to Q, also called the Kullback-
Leibler (KL) divergence of P from Q.

Definition 3. For probability distributions P and Q over X , the KL divergence of P from Q is
defined as

EX∼P [− logQ(X)]− EX∼P [− logP (X)] .
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Interpreted from the lens of density estimation under log loss, KL divergence thus expresses
the excess risk due to predicting via distribution Q rather than the optimal distribution P . Also,
as shown in Lemma 1, the KL divergence is always nonnnegative and, for fixed P , it is uniquely
minimized by taking Q = P .
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