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1 Decision-theoretic online learning
Consider a game in which, every morning, you go to a horse racetrack with $1000 to bet on horses.
Not knowing much about horse races, but having access to K experts who can place bets for you,
you decide to divide up your $1000 among the experts each day. After the races for the day are
over and the outcomes have been determined, your initial investment with each expert has grown or
shrunk, and this new sum of money is returned to you. If there is an expert that does particularly
well over all the days, in hindsight you naturally wish that you had always placed all of your money
with that expert on each day. Intuitively, the amount of regret you feel is the difference between
the amount of money you end up with and the amount of money you would have ended up with
had you always gone with that best expert.

In decision-theoretic online learning, Learner has a fixed set of K actions. In each round,
Learner selects a probability distribution pt over the K actions, each action j ∈ [K] incurs some
loss `j,t in a range [0, 1], and Learner suffers a loss equal to pt · `t =

∑K
j=1 pj,t `j,t, i.e. the expected

loss of a random action j drawn from distribution pt. The goal of Learner is to ensure that its regret
over T rounds is small, where the regret is defined as the amount by which Learner’s cumulative
loss exceeds the cumulative loss of the best action in hindsight. Formally, the protocol is as follows:

Protocol:

For round t = 1, 2, . . .

1. Learner plays probability distribution pt over [K].
2. Nature plays loss vector `t = (`1,t, . . . , `K,t) and reveals `t to Learner.
3. Each action j ∈ [K] suffers loss `j,t and Learner suffers loss pt · `t.

In sequential prediction problems, the strength of the adversary (Nature) can vary; the adversary
can be either:

• oblivious - Nature knows which algorithm Learner is using, but the adversary must commit
to its entire sequence of loss vectors before Learner takes its first action.

• non-oblivious or adaptive - In round t, Nature can select the loss vector based on all of
Learner’s previous actions p1,p2, . . . ,pt−1.

We will make no assumptions about Nature: Nature will be a non-oblivious adversary. More-
over, we will even assume that Nature gets to observe pt before it plays `t.

It will be convenient to introduce some notation. For a given online learning algorithm that
plays action pt in round t, let ˆ̀

t = pt · `t. We also define cumulative loss variables. For each t and
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for each j ∈ [K], define L̂t and Lj,t as

L̂t :=
t∑

s=1

ˆ̀
s Lj,t :=

t∑
s=1

`j,s .

Using this notation, the regret of an online learning algorithm that plays p1, . . . ,pT against the
sequence of loss vectors `1, . . . , `T is

L̂T − min
j∈[K]

Lj,T .

Our interest will be in obtaining an upper bound on the regret that holds for any sequence of
loss vectors. That is, we wish to upper bound the worst-case regret of a given learning strategy:

max
`1,...,`T

{
L̂T − min

j∈[K]
Lj,T

}
.

Since all the losses are in the interval [0, 1], it is trivial to obtain regret that grows linearly in T .
Therefore, our goal will be to obtain a regret bound that is sublinear. An algorithm which obtains
sublinear regret often is called a no-regret algorithm, the idea being that sublinear regret, when
averaged over rounds, vanishes as T →∞.

2 Hedge
There is a no-regret learning algorithm for decision-theoretic online learning. This algorithm,
Hedge, is due to Freund and Schapire. Hedge is also often called exponential weights, because
it maintains weights over each action, and the weight of an action decays exponentially in the
cumulative loss incurred by that action over the previous rounds. This algorithm is related to
an earlier algorithm of Vovk (1990) for the game of prediction with expert advice (which we will
study next week), and it traces the idea of using exponential weights also to the weighted majority
algorithm of Littlestone and Warmuth (1994).

Algorithm 1. Hedge

Given: η > 0
Set wj,0 = 1 for j = 1, . . . ,K

For t = 1, . . . , T :

1. Set pj,t = wj,t−1∑K
i=1wi,t−1

for j = 1, . . . ,K

2. Observe loss vector `t from Nature

3. Suffer loss pt · `t

4. Set wj,t = wj,t−1e
−η`j,t for j = 1, . . . ,K

2.1 A first regret bound

Hedge satisfies the following guarantee:
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Theorem 1. Let Hedge be run with learning rate η =
√

8 logK
T . Then, for all sequences of loss

vectors `1, . . . , `T ,

L̂T ≤ min
j∈[K]

Lj,T +

√
T logK

2 .

In order to prove this result, we will use a result called Hoeffding’s Lemma, the key supporting
lemma for proving Hoeffding’s inequality.

Lemma 1 (Hoeffding’s Lemma). Let X be a random variable satisfying E[X] = 0 and a ≤ X ≤ b.
Then for any λ ∈ R,

log E[eλX ] ≤ λ2(b− a)2

8 .

Proof of Theorem 1. Let η > 0; we will set it to the value in the theorem statement near the end
of the proof.

For t ∈ [T ], define

Wt :=
K∑
j=1

wj,t.

The proof is in 3 steps.

Step 1: We first show that

log WT

W0
≥ −η min

j∈[K]
Lj,T − logK. (1)

To see this, observe that for any j ∈ [K], we have wj,T = e−ηLj,T , and so

log WT

W0
= log

 K∑
j=1

e−ηLj,T

− logK.

Now, since a sum of nonnegative terms is lower bounded by their maximum element, we have

log

 K∑
j=1

e−ηLj,T

− logK ≥ log
(

max
j∈[K]

e−ηLj,T

)
− logK

= −η min
j∈[K]

Lj,T − logK.

Step 2: Next, we show that for any t ∈ [T ],

log Wt

Wt−1
≤ −η Ej∼pt [`j,t] + η2

8 . (2)
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Observe that

log Wt

Wt−1
= log

∑K
j=1 e

−ηLj,t∑K
j=1wj,t−1

= log
∑K
j=1 e

−ηLj,t−1e−η`j,t∑K
j=1wj,t−1

= log
∑K
j=1wj,t−1e

−η`j,t∑K
j=1wj,t−1

= log Ej∼pt

[
e−η`j,t

]
.

Rewriting by centering `j,t around its expectation (for j ∼ pt), the above is equal to

−η Ej∼pt [`j,t] + log Ej∼pt

[
e−η(`j,t−Ej∼pt [`j,t])

]
.

The second term can be bounded via Hoeffding’s Lemma (Lemma 1) since the losses are in [0, 1]
(and since shifting the losses does not change the difference (b−a) in Hoeffding’s lemma); the above
is thus at most

−η Ej∼pt [`j,t] + η2

8 .

Step 3: Finally, observe that

log WT

W0
=

T∑
t=1

log Wt

Wt−1
.

Thus, applying the lower bound from (1) and the upper bound from (2), we have

−η min
j∈[K]

Lj,T − logK ≤ log WT

W0
≤ −η

T∑
t=1

Ej∼pt [`j,t] + Tη2

8 .

Rewriting and dividing by η, this is equivalent to

L̂T ≤ min
j∈[K]

Lj,T + logK
η

+ Tη

8 .

Tuning η by setting it to
√

8 logK
T yields the result.

2.2 Extension for unknown T

The guarantee in Theorem 1 relies upon tuning the learning rate η with knowledge of the time
horizon T . When we do not know T , we can still get a good regret bound by using the “doubling
trick”. The idea is to run the algorithm in epochs of lengths 20, 21, . . . until we have hit the time
horizon. At the start of an epoch, the algorithm is reset, and the learning rate η is tuned according
to the epoch size. Proceeding in this way, we will run the algorithm for epochs r = 0, 1, . . . , N ,
where N = dlog2(T + 1)e − 1. Letting L̂T be the cumulative loss of this strategy, we have the
following regret guarantee:
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Corollary 1.

L̂T ≤ min
j∈[K]

Lj,T +
√

2√
2− 1

√
T logK

2 .

Proof. Observe from Theorem 1 that within the r th epoch, we have

2r+1−1∑
t=2r

ˆ̀
t ≤ min

j∈[K]

2r+1−1∑
j=2r

`j,t +

√
2r logK

2 .

Thus, over all the epochs, we have

L̂T =
N∑
r=0

2r+1−1∑
t=2r

ˆ̀
t ≤

 N∑
r=0

min
j∈[K]

2r+1−1∑
j=2r

`j,t

+

 N∑
r=0

√
2r logK

2

 .
We bound each of the two terms on the right-hand side in sequence. Clearly,

N∑
r=0

min
j∈[K]

2r+1−1∑
j=2r

`j,t ≤ min
j∈[K]

N∑
r=0

2r+1−1∑
j=2r

`j,t = min
j∈K

Lj,T .

It remains to bound
∑N
r=0 2r/2. For this, observe that

(21/2 − 20)
N∑
r=0

2r/2 = 2
N+1

2 − 1;

this is easy to see by expanding the summation, yielding a telescoping series. Therefore,

N∑
r=0

2r/2 = 2
N+1

2 − 1√
2− 1

= 2
dlog2(T +1)e

2 − 1√
2− 1

≤
√

2
√
T + 1− 1√
2− 1

≤
√

2
√
T√

2− 1
.
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