
Machine Learning Theory (CSC 482A/581B) - Lecture 2

Nishant Mehta

1 Halving algorithm
When the concept class is finite, there is a surprisingly simple algorithm that obtains a mistake
bound of log2 |C|. This algorithm is called the Halving algorithm, and it uses two key ideas.

The first idea is that of a version space. The version space is the set of hypotheses that are
consistent with the data observed thus far. Thus, at the start of round t, the version space Vt is
the subset of hypotheses from C which are consistent with (x1, y1), . . . , (xt−1, yt−1).

The second idea is to predict according to a majority vote. For a set of hypotheses F , define
the majority vote based on F as

mvF (x) =
{

1 if |{f ∈ F : f(x) = 1}| ≥ |F|/2;
0 otherwise.

The Halving algorithm simply predicts according to the majority vote with respect to the version
space in every round.

Algorithm 1: Halving Algorithm
V1 ← C
for t = 1→ T do

Observe xt
ft ← mvVt (and predict ŷt = mvVt(xt))
Observe true label yt = c(xt)
Set Vt+1 ← {f ∈ Vt : f(xt) = yt}

end

How many mistakes does this algorithm make? Because it predicts according to the majority
vote, wherever the algorithm makes a mistake it is guaranteed that at least half the hypotheses in
the version space were wrong; thus, the version space is halved on each mistake. Formally, if the
algorithm makes a mistake in round t, it holds that |Vt+1| ≤ |Vt|/2. We initially have V1 = C, and
so if we have made Mt mistakes at the beginning of round t, it follows that |Vt| ≤ |C|/2Mt . Since
there exists a perfect hypothesis c ∈ C, the algorithm can make at most log2 |C| mistakes.

We have just shown that any finite concept class is learnable in the mistake bound model using
the Halving algorithm.

Theorem 1. The Halving algorithm learns any finite concept class C in the mistake bound model
and makes at most log2 |C| mistakes.

1



Unfortunately, the runtime of the Halving algorithm is linear in |C|, which can be exorbitant.
Why is this bad? In many situations, the size of the concept class |C| can be exponential in the
dimension of the data, in which case the runtime of the Halving algorithm is exponential in d (!).
For instance, the class of monotone conjunctions has cardinality 2d. In other cases, such as the
case of linear separators, the concept class can even be infinite.

2 Learning linear separators in the mistake bound model
We next consider the problem of linear classification in the realizable case. Specifically, we will look
at the subclass of linear classifiers known as homogenous linear separators.

Let X = Rd and Y = {−1,+1}. The concept class of homogenous linear separators is defined
as C = {fw : w ∈ Rd}, for hypotheses fw(x) = sgn(〈w, x〉). Here, sgn is the sign function, defined1

as the map

sgn(z) =
{

+1 if z ≥ 0;
−1 if z < 0.

The reason these linear separators are called homogenous is because the concept class lacks a
bias term; consequently, the linear separator corresponding to a vector w is the hyperplane normal
to w that passes through the origin, i.e. {x ∈ Rd : 〈w, x〉 = 0}. If we also allowed for a bias term
b ∈ R, the class would be upgraded to the set of non-homogenous linear separators (which do not
necessarily pass through the origin); this class also is commonly referred to as halfspaces, and each
hypothesis is of the form x 7→ sgn(〈w, x〉+ b).

As before, we make the realizability assumption with respect to concept class C. The sequence
of examples is thus linearly separable, meaning that there exists a vector w∗ ∈ Rd for which

yt = sgn(〈w∗, xt) for all t ∈ [T ].

Since the output of any classifier fw is invariant to scaling of w, without loss of generality we assume
that w∗ has unit `2 norm.

At this stage, we lack the tools to provide a mistake bound for learning the class of homogenous
linear separators. Were the concept class finite, we could use our mistake bound for the Halving
algorithm, but alas, the concept class is not even countable. However, with one additional as-
sumption and a simple discretization argument, we will be able to apply our result for the Halving
algorithm.

Assuming separability with margin. We further assume that the positive and negative ex-
amples are linearly separable by some positive margin. To make this precise, for any w ∈ Rd, define
the margin with respect w ∈ Rd (and the sequence of examples) to be

γw = min
t∈[T ]

yt〈w, xt〉
‖w‖2

.

If fw correctly classifies (xt, yt), it is easy to see that γw is equal to the Euclidean distance from xt
to the hyperplane {x : 〈w, x〉 = 0}. (In class I explained this statement using a picture and some
basic trigonometry)

1The sign function usually maps zero to zero, but we map zero to one so that our classifiers take values in {−1, +1}.

2



The margin γ is then

γ = γw∗ = min
t∈[T ]

yt〈w∗, xt〉.

We now formalize our assumption of separability with margin:

Assumption 1. There exists a unit vector w∗ ∈ Rd for which

γ = min
t∈[T ]

yt〈w∗, xt〉 > 0.

With the margin assumption in place, we now form a finite, discretized approximation Cγ of
the infinite class C; the key property that our discretized approximation will satisfy is that it still
contains a hypothesis that linearly separates the data, and so running the Halving algorithm on
Cγ will yield a mistake bound of log |Cγ |.

To define Cγ , we first introduce a concept known as a cover and then introduce the related
concept of a covering number.

Definition 1. Let (Z, ‖ · ‖) be a metric space. We say that A is a proper2 ε-cover for Z if A ⊂ Z
and, for every x ∈ Z, there exists some x′ ∈ A such that ‖x− x′‖ ≤ ε.

Definition 2. For a metric space (Z, ‖ · ‖), define the proper ε-covering number N (Z, ‖ · ‖, ε) as
the minimum cardinality of a proper ε-cover for Z.

Let S = {w ∈ Rd : ‖w‖2 = 1}, i.e. the unit sphere which is the boundary of the d-dimensional
Eucidean unit ball. Then it is true that3

N (S, ‖ · ‖2, ε) ≤
(4
ε

+ 1
)d

;

we will not prove this fact here, but short proofs exist.
Now, define R := maxt∈[T ] ‖xt‖2, take Sγ to be a proper ε-cover for S for ε = γ

2R , and define

Cγ = {fw : w ∈ Sγ} .

Then, by the definition of Sγ , there exists w̃ ∈ Sγ for which ‖w∗ − w̃‖2 ≤ γ
2R . For this w̃, for

any t ∈ [T ], we have

yt〈w̃, xt〉 = yt〈w∗, xt〉+ yt〈w̃ − w∗, xt〉
≥ γ + yt〈w̃ − w∗, xt〉 (separability with margin)
≥ γ − ‖w̃ − w∗‖2 · ‖xt‖2 (Cauchy-Schwarz inequality)

≥ γ − γ

2R ·R

= γ

2 .

Thus, we have γw̃ ≥ γ/2 > 0, and so fw̃ ∈ Cγ perfectly separates the data, as promised.
The following corollary is now immediate.

2The modifier proper means that we require that A ⊂ Z. In general, covers need not satisfy this requirement.
3The same claim in fact holds for the unit ball itself (and for any norm), and we likely are overpaying quite a bit

since the intrinsic dimension of the unit sphere is d− 1 rather than d.

3



Corollary 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples that is linearly separable with
margin γ > 0 in the sense of Assumption 1. Then on this sequence the Halving algorithm based on
class Cγ makes at most d log2

(⌈
8R
γ

⌉
+ 1

)
mistakes, where R = maxt∈[T ] ‖xt‖2.

We thus have a finite mistake bound over an infinite class, at least under the assumption of
realizability and boundedness of the data. However, the algorithm (Halving) is inefficient, main-
taining Cγ is inefficient (and not even possible if γ is unknown!), and the mistake bound is far from
optimal. Next, we will see that there is a simple, efficient algorithm which obtains a mistake bound
that is independent of the dimension d, and this algorithm does not need to know γ.

3 Perceptron
We now consider an efficient algorithm for learning linear separators with a finite number of mis-
takes, under the assumption that the data is separable with margin γ. This algorithm is the
Perceptron algorithm.

Algorithm 2: Perceptron
w0 ← 0
m = 0
for t = 1→ T do

Observe xt
Predict ŷt = sgn(〈wm, xt〉)
Observe true label yt = c(xt)
if ŷt 6= yt then

wm+1 ← wm + ytxt
m← m+ 1

end
end

Theorem 2. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples that is linearly separable with
margin γ > 0. Then on this sequence the Perceptron algorithm makes at most R2

γ2 mistakes.

Remarkably, this mistake bound is independent of the dimension d (note, however, that the
dependence on γ is much worse as compared our argument based on the Halving algorithm).

Before showing the proof, let’s build some intuition for Perceptron’s update rule in the case of
a mistake. Suppose that Perceptron makes its m th mistake on a positively labeled example (x, 1),
resulting in the update wm+1 = wm + x. Then 〈wm+1, x〉 = 〈wm, x〉+ ‖x‖2 > 〈wm, x〉, and so the
new hypothesis is closer to classifying x as positive. This same intuition works for mistakes on
negative examples as well.

4



Proof. The proof is based on two claims.
The first claim is that the norm of wm is never too big:

‖wm‖ ≤ R
√
m. (1)

Let’s prove this claim. For j ≥ 1, let (x̃j , ỹj) denote the j th example on which Perceptron made a
mistake. It therefore holds that

wm+1 = wm + ỹm x̃m.

Then

‖wm+1‖2 = ‖wm + ỹm x̃m‖2

= ‖wm‖2 + ‖x̃m‖2 + 2ỹm〈wm, x̃m〉
≤ ‖wm‖2 +R2,

where the inequality follows because ỹm〈wm, x̃m〉 ≤ 0 since wm made a mistake on (x̃m, ỹm).
Repeating this argument all the way back to w0 = 0 yields the claim.

The second claim is that the inner product 〈wm, w∗〉 grows quickly with m:

〈wm, w∗〉 ≥ γ ·m. (2)

To see this, observe that

〈w∗, wm+1〉 = 〈w∗, wm + ỹm x̃m〉
= 〈w∗, wm〉+ ỹm〈w∗, x̃m〉
≥ 〈w∗, wm〉+ γ.

Applying this argument recursively yields 〈w∗, wm+1〉 ≥ γ · (m+ 1), proving the claim.
Now, the inner product 〈wm, w∗〉 grows at most linearly in ‖wm‖ (from the Cauchy-Schwarz

inequality), which itself grows no faster than the root of m (from the first claim). Consequently,
〈wm, w∗〉 = O(

√
m). On the other hand, this inner product also grows at least linearly in m (from

the second claim), and so it must be the case that m is bounded as otherwise we would arrive at a
contradiction. Indeed, applying Cauchy-Schwarz to (2) and using (1) yields

γ ·m
(2)
≤ 〈w∗, wm〉 = ‖w∗‖ · ‖wm‖ ≤ ‖wm‖

(1)
≤ R
√
m,

and so m ≤ R2

γ2 .

5


	Halving algorithm
	Learning linear separators in the mistake bound model
	Perceptron

