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1 Prediction with Expert Advice
We now upgrade the decision-theoretic online learning setting to a more general setting known as
prediction with expert advice. In this setting, we have a loss function ` : A×Y → R that, for each
action a in an action space A and each outcome y in an outcome space Y, produces a loss `(a, y).
We will assume that the action space A is convex and that the loss function is convex as a function
of its first argument (the action a ∈ A). Two common examples are:

• Classification with absolute loss: Here, we take A = [0, 1], Y = {0, 1}, and `(a, y) = |a− y|.

• Classification with squared loss: We take A and Y as before and now set `(a, y) = (a− y)2.

In prediction with expert advice, each of the K experts now provides advice in the form of a
suggested action from A at the start of each round. Learner then aggregates these actions in some
way, producing its own action within A. Finally, Nature selects an outcome, and Learner and each
expert suffer loss according to their respective actions and the outcome.

Formally, the protocol is as follows:

Protocol:

For round t = 1, 2, . . .

1. Nature selects the expert advice {fj,t : j ∈ [K]} and reveals it to Learner.
2. Learner selects action at ∈ A.
3. Nature selects an outcome yt ∈ Y and reveals it to Learner.
4. Each expert j ∈ [K] suffers loss `(fj,t, yt) and Learner suffers loss `(at, yt).

As before, our goal is to minimize the regret, now defined as:

T∑
t=1

`(at, yt)− min
j∈[K]

T∑
t=1

`(fj,t, yt).

To simplify the presentation, we will adopt the following notation for any j ∈ [K] and t ∈ [T ]:

• `j,t = `(fj,t, yt);

• Lj,t =
∑t
s=1 `j,s.

Also, for any t ∈ [T ], denote the loss and cumulative loss of the learning algorithm as

• ˆ̀
t = `(at, yt);
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• L̂t =
∑t
s=1

ˆ̀
s.

The algorithm that we study for this setting is a suitably adapted variation of the exponential
weights algorithm. This algorithm, called the exponentially weighted average forecaster, works as
follows. In each round, the algorithm maintains weights over the experts, with wj,t indicating the
weight on the j th expert in round t. In round t, the forecaster predicts according to the following
weighted average of the experts’ actions:

at =
∑K
j=1wj,t−1 fj,t∑K
j=1wj,t−1

.

We initialize the weights as wj,0 = 1 for j ∈ [K]. At the end of a given round, the losses of the
experts are observable, and the weights are updated according to the rule

wj,t = wj,t−1e
−η`j,t .

By unrolling this update backwards to wj,0, we see that

wj,t = e−ηLj,t .

From the above, we can see that the weight updates precisely match the updates in Hedge.
Moreover, it turns out that since we have assumed that the loss is convex, a nearly identical

analysis as we used for Hedge implies the following worst-case regret guarantee.

Theorem 1. Let the learning rate η be set as η =
√

8 logK
T . Then, for any sequence of expert

predictions (fj,t)j∈[K],t∈[T ] and any sequence of outcomes y1, . . . , yT , the regret of the exponentially
weighted average forecaster satisfies

L̂T − min
j∈[K]

Lj,T ≤

√
T logK

2 .

Proof. The proof of this result requires only a minor modification to the proof of Theorem 1 from
Lecture 18. We recall the 3 steps of that proof and indicate where the analysis needs to be adapted.

For t ∈ [T ], define

Wt :=
K∑
j=1

wj,t.

The first step is to show that

log WT

W0
≥ −η min

j∈[K]
Lj,T − logK. (1)

The analysis for this step, as already done for Hedge, holds without modification.
The second step is to show that for any t ∈ [T ],

log Wt

Wt−1
≤ −η Ej∼pt [`j,t] + η2

8 , (2)

where pt is the distribution over [K] played by Hedge in round t. This distribution is defined as

pt(j) = wj,t−1
Wt−1

.
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The claim (and proof) for this step from Hedge needs to be adapted, since Ej∼pt [`j,t] is the loss of
Hedge in round t, but it is not the loss of the exponentially weighted average forecaster in round t.
Since the loss `j,t = `(fj,t, yt) is convex in its first argument, Jensen’s inequality implies that

Ej∼pt [`(fj,t, yt)] ≥ `(Ej∼pt [fj,t], yt) = ˆ̀
t,

which, combined with (2), implies that

log Wt

Wt−1
≤ −η ˆ̀

t + η2

8 . (3)

The remainder of the proof of Theorem 1 from Lecture 18 can be retraced to yield the result,
where we sum (3) from t = 1 to T , combine the resulting inequality with (1), and use the specified
setting of η.

2 Exp-concave losses
We thus have have seen regret bounds that scale as

√
T logK. We now turn to a special type of

loss functions, known as an exp-concave losses. These loss functions are of interest for at least
two reasons. First, they encompass several well-known and widely-used loss functions, including
squared loss, logistic loss, and log loss. Second, and quite remarkably, for these loss functions the
exponentially weighted average forecaster achieves regret that is constant with respect to T .

Definition 1. We say that a loss function ` is η-exp-concave if, for each outcome y ∈ Y, the function
a 7→ e−η`(a,y) is concave. Equivalently, ` is η-exp-concave if, for all y ∈ Y and all distributions P
over A,

Ea∼P
[
e−η`(a,y)

]
≤ e−η`(Ea∼P [a],y). (4)

Before showing how to get an improved regret bound for exp-concave losses, let’s first take a
look at a few examples.

Our first and simplest example is log loss. Prediction with expert advice with log loss is specified
by taking A = [0, 1], Y = {0, 1}, and `(a, y) = −y log a−(1−y) log(1−a). Log loss is 1-exp-concave,
as is readily verified by considering the two cases. For instance, if y = 1, then the function

a 7→ e−`(a,1) = elog a = a

is clearly concave.
In class I also gave an example with sequential investment and a variant of log loss
Our second example is squared loss, with A = Y = [0, 1] and `(a, y) = (a − y)2. In order

to establish the exp-concavity of squared loss, we will use an alternate characterization of exp-
concavity. For the time being, we restrict to one-dimensional actions a for simplicity. Take X ⊂ R;
recall that a function g : X → R is concave if g′′(x) ≤ 0 for all x ∈ R. Now, using the definition of
η-exp-concavity, we see that a function f : X → R is η-exp-concave if and only if

η2(f ′(x))2e−ηf(x) − ηf ′(x)e−ηf(x) ≤ 0 for all x ∈ X ,

which is equivalent to the condition

η(f ′(x))2 ≤ f ′′(x) for all x ∈ X .
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Returning to the example of squared loss, we can verify that the squared loss is η-exp-concave if
and only if

η (2(a− y))2 ≤ 2 for all a, y ∈ [0, 1],

or equivalently,

(a− y)2 ≤ 1
2η for all a, y ∈ [0, 1].

This condition is satisfied for η = 1
2 , and so the squared loss is 1

2 -exp-concave.

3 Constant regret under exp-concavity
Theorem 2. Let ` : A × Y → R be an η-exp-concave loss for some η > 0. Let the learning rate
be set to the same value η. Then, for any sequence of expert predictions (fj,t)j∈[K],t∈[T ] and any
sequence of outcomes y1, . . . , yT , the regret of the exponentially weighted average forecaster satisfies

L̂T − min
j∈[K]

Lj,T ≤
logK
η

.

Proof. The proof of this result is remarkably simpler than the proof of Theorem 1. First, observe
that the regret satisfies

L̂T − min
j∈[K]

Lj,T = max
j∈[K]

{
L̂T − Lj,T

}
= 1
η

log max
j∈[K]

eη(L̂T−Lj,T )

≤ 1
η

log
∑
j∈[K]

eη(L̂T−Lj,T )

= Φ(T ),

where, for each t ∈ [T ], we define the potential function

Φ(t) = 1
η

log
∑
j∈[K]

eη(L̂t−Lj,t).

Next, we claim that, for any t ∈ [T ],

Φ(t) ≤ Φ(t− 1) (5)
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We will prove this claim momentarily. Supposing for now that the claim is true, then

L̂T − min
j∈[K]

Lj,T ≤
logK
η
≤ Φ(T )

≤ Φ(T − 1)
. . .

≤ Φ(0)

= 1
η

log
∑
j∈[K]

eη(L̂0−Lj,0)

= 1
η

log
∑
j∈[K]

eη0

= logK
η

,

and so the result follows.
Finally, we prove (5). Observe that it is equivalent to prove that∑

j∈[K]
eη(L̂t−Lj,t) ≤

∑
j∈[K]

eη(L̂t−1−Lj,t−1),

which itself is equivalent to proving that∑
j∈[K]

e−ηLj,t−1e−η`j,teη
ˆ̀
t ≤

∑
j∈[K]

e−ηLj,t−1 .

Now, using wj,t−1 = e−ηLj,t−1 and rearranging, this is equivalent to∑
j∈[K]wj,t−1e

−η`j,t∑
j∈[K]wj,t−1

≤ e−η ˆ̀
t . (6)

Finally, setting pj,t = wj,t−1∑K

i=1 wi,t−1
and recalling that

`j,t = `(fj,t, yt) ˆ̀
t = `(at, yt) = `

 T∑
j=1

pj,tfj,t, yt

 ,

Thus, (6) becomes

Ej∼pt

[
e−η`(fj,t,yt)

]
≤ e−η`(Ej∼pt [fj,t],yt).

This last inequality holds because ` is η-exp-concave.
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