
Machine Learning Theory (CSC 482A/581B) - Lecture 21

Guest Lecturer: Bingshan Hu

1 Multi-Armed Bandit Learning
We will start to talk about the multi-armed bandit problem, which can be viewed as a form of
online learning in which Learner only receives partial information at the end of each round. In an
n-armed bandit problem, there are n arms. In each round, Learner selects one arm to pull and
observes the reward associated with only the pulled arm. Note that the rewards associated with the
other arms remain hidden from Learner. In this sense, Learner receives only partial information.
The goal of Learner is to accumulate as much reward as possible over a finite sequence of pulls.

As Learner only receives partial information at the end of each round, a successful learning
algorithm needs to make a good balance between exploration (pulling an under-sampled arm that
might yield better reward) and exploitation (pulling the arm with the highest observed reward so
far). Let [n] be the arm set and n be the number of arms. Let xti be the reward obtained of pulling
arm i in round t. For simplicity, we assume xti ∈ [0, 1]. The general multi-armed bandit learning
protocol can be described as follows:

Algorithm 1 Multi-Armed Bandit Learning Protocol
1: for t = 1, 2, · · · , T do
2: Algorithm A pulls an arm it ∈ [n]
3: Simultaneously, Nature generates a reward vector (xt1, xt2, · · · , xtn) ∈ [0, 1]n
4: Algorithm A observes reward xtit
5: end for

The cumulative reward of an algorithm A over T rounds is

GT [A] =
T∑
t=1

xtit .

The cumulative reward of arm i over T rounds is

GT [i] =
T∑
t=1

xti .

Then the regret of an algorithm A over T rounds is

RT [A] = max
i∈[n]

GT [i]−GT [A]

= max
i∈[n]

T∑
t=1

xti −
T∑
t=1

xtit .

The goal of a multi-armed bandit algorithm is typically to minimize the above regret either in
expectation or with high probability or in a worst case sense, which depends on how the reward
vectors are assumed to be generated. In this course we will only cover the following bandit settings.
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Stochastic setting. In this setting, each arm i ∈ [n] is associated with an (unknown) probability
distribution pi on [0, 1], and the rewards for arm i are assumed to be drawn i.i.d. from pi.

Adversarial setting. We make no probabilistic assumptions on the rewards xti. The rewards
can be generated by an adversary.

This lecture will focus on the stochastic multi-armed bandit problem while the adversarial
setting will be covered in the coming lecture.

2 Stochastic Multi-Armed Bandit Problems
For simplicity, we assume there is no dependency among arms.

The rewards of arm i are i.i.d. according to a fixed probability distribution pi on [0, 1]. However,
Learner does not know the mean reward of arm i. Let xti be the reward of arm i at round t.

Let µi be the (unknown) mean reward for arm i, i.e., µi = Ext
i∼pi

[xti].
Let it ∈ [n] be the arm pulled by Learner at round t.
In the stochastic setting, it makes sense to bound the regret of an algorithm in expectation over

the draw of the rewards. The expected regret of algorithm A over T rounds is given by

E[RT [A]] = E
[
max
i∈[n]

T∑
t=1

xti −
T∑
t=1

xtit

]
.

In practice, however, the expected regret is hard to work with as the max term is inside the
expectation. Therefore, we often minimize the pseudo-regret instead. The pseudo-regret is given
by

R̄T [A] = max
i∈[n]

E
[
T∑
t=1

xti −
T∑
t=1

xtit

]
, (1)

which pulls the max term outside the expectation.
Clearly, we always have R̄T [A] ≤ E

[
RT [A]

]
, which means the pseudo-regret is upper bounded

by the expected regret. However, an upper bound on the pseudo-regret does not imply an upper
bound on the expected regret. (Nishant will talk more about this later: in adversarial bandit
setting).

In order to minimize the pseudo-regret, one essentially wants to find the optimal arm, i.e., the
arm with the highest mean reward. Various strategies have been proposed to do when we have
samples from the arms.

The Upper Confidence Bound (UCB) algorithm was devised by Auer et al. (2002). It provides
a good theoretical guarantee and can be implemented easily. The basic idea behind UCB algorithm
is to construct a confidence interval for each arm at each round. Instead of pulling the arm with
the highest sample mean, Learner pulls the arm with the highest upper confidence bound. We will
talk about all these details soon.
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3 UCB and Regret Bound
To introduce UCB, let’s define the following first.

Let Oi(t) be the number of times that arm i has been pulled until the end of round t, i.e.,

Oi(t) :=
t∑

s=1
1(is = i).

Let µ̂i,Oi(t) denote the sample (empirical) mean of arm i until the end of round t, i.e., the

averaged reward among Oi(t) pulls: µ̂i,Oi(t) := 1
Oi(t)

t∑
s=1

xsi · 1(is = i). Note that if an arm is not
pulled at round t, the indicator function will return 0.

Let Di(t) :=
√

2 ln(t)
Oi(t−1) be the confidence radius of arm i at round t. Then the confidence interval

of arm i at round t is defined as [µ̂i,Oi(t−1)−Di(t), µ̂i,Oi(t−1) +Di(t)]. Note that when constructing
the confidence interval at round t, we can only use the information obtained until the end of round
t−1. That is why we use Oi(t−1) and µ̂i,Oi(t−1) instead of Oi(t) and µ̂i,Oi(t). The upper confidence
bound µ̄i(t) is defined as the upper bound of the confidence interval, i.e., µ̄i(t) := µ̂i,Oi(t−1) +Di(t).

Algorithm 2 presents UCB in detail.

Algorithm 2 UCB
1: for t = 1, 2, · · · , T do
2: ∀i ∈ [n], compute the upper confidence bound µ̄i(t) = µ̂i,Oi(t−1) +

√
2 ln(t)
Oi(t−1)

3: Pull arm it ∈ arg max
i∈[n]

µ̄i(t)

4: Observe reward xtit
5: end for

For simplicity, let i∗ be the unique optimal arm and µ∗ := µi∗ . Let ∆i := µi∗ − µi be the gap
of mean reward between the best arm i∗ and any sub-optimal arm i.

Theorem 1 (Auer et al. (2002)). The pseudo-regret R̄T of UCB is at most

R̄T [UCB] ≤
∑

i:∆i>0

8 ln(T )
∆i

+
(

1 + π2

3

)
∆i .

Before going into the proof of Theorem 1. Now we come back to the pseudo-regret and rewrite
it as

R̄T [UCB] = max
i∈[n]

E
[
T∑
t=1

xti −
T∑
t=1

xtit

]

= max
i∈[n]

E
[
T∑
t=1

xti

]
− E

[
T∑
t=1

xtit

]
= max

i∈[n]
Tµi −

T∑
t=1

E
[
xtit
]

= Tµ∗ −
T∑
t=1

E [µit ]

= E
[
n∑
i=1

Oi(T )
]
· µ∗ − E

[
n∑
i=1

Oi(T ) · µi
]

=
∑

i:∆i>0
E[Oi(T )] ·∆i .

(2)

Now we only need to upper bound E[Oi(T )] for all i ∈ [n] such that ∆i > 0.
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Proof of Theorem 1. Fix any sub-optimal arm i such that ∆i > 0, and let Li be a positive integer
that will be chosen later. Then we have

E[Oi(T )] = E
[
T∑
t=1

1(it = i)
]

(Regret decomposition)

= E
[
T∑
t=1

1(it = i, Oi(t− 1) ≤ Li)
]

︸ ︷︷ ︸
(ω)≤Li

+E
[
T∑
t=1

1(it = i, Oi(t− 1) > Li)
]

≤ Li + E
[
T∑
t=1

1(it = i, Oi(t− 1) > Li)
]

.

(3)

Term (ω) can be trivially bounded by Li via bounding the indicator function directly. Each time
when arm i is pulled, the number of pulls of arm i will increment by one. After the number of pulls
of arm i hits Li, the indicator function in term (ω) cannot return 1 anymore.

Remark 1. Usually, if Oi(t − 1) ≤ Li, we say that sub-optimal arm i is in the under-sampled
regime while if Oi(t − 1) > Li, we say sub-optimal arm i is in the sufficiently sampled regime.
Later, we will show that when a sub-optimal arm in the sufficiently sampled regime, we can use
Hoeffding’s inequality.

If a sub-optimal arm i is pulled, it means its upper confidence bound µ̄i(t) must be no smaller
than that of the best arm. Otherwise, sub-optimal arm i cannot be pulled. Therefore, we have

E[Oi(T )] ≤ Li + E
[
T∑
t=1

1(µ̄i(t) ≥ µ̄i∗(t), Oi(t− 1) > Li)
]

= Li + E
[
T∑
t=1

1
(
µ̂i,Oi(t−1) +

√
2 ln(t)
Oi(t−1) ≥ µ̂i∗,Oi∗ (t−1) +

√
2 ln(t)

Oi∗ (t−1) , Oi(t− 1) > Li

)]
,

(4)
where the equality simply uses the definition of µ̄i(t) and µ̄i∗(t).

Note that both Oi(t− 1) and Oi∗(t− 1) are random variables, but both of them have a deter-
ministic lower bound and a deterministic upper bound. Then, we have

E[Oi(T )] ≤ Li + E
[
T∑
t=1

1
(

max
Li≤si≤t−1

(
µ̂i,si +

√
2 ln(t)
si

)
≥ min

0<s∗≤t−1

(
µ̂i∗,s∗ +

√
2 ln(t)
s∗

))]

≤ Li + E


T∑
t=1

t−1∑
si=Li

t−1∑
s∗=1

1

µ̂i,si +
√

2 ln(t)
si

≥ µ̂i∗,s∗ +

√
2 ln(t)
s∗


︸ ︷︷ ︸

(α)

 ,

(5)

where the last inequality uses the union bound to pull the max and the min outside the indicator
function.

Now we decompose the indicator function again. If condition (α) holds, it means at least one of
the following three in (6), (7), and (8) must hold: (Why? It can be proved by using contradiction,
simply reverse all the inequalities in (6), (7), and (8). Then you will find it contradicted with
condition (α))
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µ̂i,si ≥ µi +
√

2 ln(t)
si

(Sub-optimal i is over estimated. ) (6)

µ̂i∗,s∗ ≤ µi∗ −

√
2 ln(t)
s∗

(Best arm i∗ is under estimated. ) (7)

The above two terms are nice for us as we can use Hoeffding’s inequality.

µi∗ − µi < 2
√

2 ln(t)
si

(Only true when si <
8 ln(t)

∆2
i

. But this term might cause trouble.) (8)

How to deal with (8)? It is very simple. Just tune Li to make it never happen. Note that si ≥ Li
as si starts from Li (Recall the deterministic lower bound of Oi(t−1)). Set Li =

⌈
8 ln(T )

∆2
i

⌉
≥ 8 ln(T )

∆2
i

.

Then (8) can never be true as it is impossible to have 8 ln(T )
∆2

i
≤ Li ≤ si < 8 ln(t)

∆2
i
≤ 8 ln(T )

∆2
i

.

After setting Li =
⌈

8 ln(T )
∆2

i

⌉
, from (5) we have

E[Oi(T )] ≤ Li + E


T∑
t=1

t−1∑
si=Li

t−1∑
s∗=1

1

µ̂i,si +
√

2 ln(t)
si

≥ µ̂i∗,s∗ +

√
2 ln(t)
s∗


︸ ︷︷ ︸

(α)


≤ Li +

T∑
t=1

t−1∑
si=Li

t−1∑
s∗=1

P

µ̂i,si ≥ µi +
√

2 ln(t)
si


︸ ︷︷ ︸

(6)

+P

µ̂i,s∗ ≤ µi∗ −

√
2 ln(t)
s∗


︸ ︷︷ ︸

(7)

(9)

From Hoeffding’s inequality, for each si and t we have

P

µ̂i,si ≥ µi +
√

2 ln(t)
si


︸ ︷︷ ︸

(6)

≤ e−2·si· 2 ln(t)
si = 1

t4
(10)

Similarly, we have

P

µ̂i∗,s∗ ≤ µi∗ −

√
2 ln(t)
s∗


︸ ︷︷ ︸

(7)

≤ e−2·s∗· 2 ln(t)
s∗ = 1

t4
(11)

By plugging (10) and (11) to (9) we have

E[Oi(T )] ≤ Li +
T∑
t=1

t−1∑
si=Li

t−1∑
s∗=1

( 1
t4 + 1

t4 )

≤ Li +
T∑
t=1

2
t2

≤ 8 ln(T )
∆2

i
+ 1 + π2

3

(12)
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Note Li =
⌈

8 ln(T )
∆2

i

⌉
≤ 8 ln(T )

∆2
i

+ 1 and
∞∑
t=1

1
t2 = π2

6 .

By applying (12) to the definition of pseudo-regret (2) we have

R̄T [UCB] =
∑

i:∆i>0
E[Oi(T )] ·∆i

≤
∑

i:∆i>0
(8 ln(T )

∆2
i

+ 1 + π2

3 ) ·∆i

=
∑

i:∆i>0

8 ln(T )
∆i

+ (1 + π2

3 ) ·∆i ,

(13)

which concludes the proof.
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