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1 The non-stochastic multi-armed bandit problem
In the non-stochastic multi-armed bandit problem, also called the adversarial multi-armed bandit
problem, the losses are no longer assumed to be generated in an i.i.d. stochastic fashion. Instead,
the goal is to obtain low regret even when the sequence of losses is generated in an arbitrary way,
whether this be from an oblivious opponent (who possibly randomizes) or a non-oblivious (also
called “reactive”) adversary that selects `t = (`1,t, . . . , `K,t) with knowledge of the previous plays
of the learning algorithm.

Let It denote the arm played by the learning algorithm in round t. With this notation, the
regret of the learning algorithm is

RT =
T∑
t=1

`It,t − min
j∈[K]

T∑
t=1

`j,t.

The capitalization of the variable It is intentional: any learning algorithm that obtains low
regret must necessarily randomize, even if the adversary is only oblivious, and so It will be a
random variable. To see how a deterministic strategy can fail to obtain low regret, we consider a
simple example.

1.1 The need for randomization

Let K = 2, and suppose that the learning algorithm is deterministic, so that conditional on
`1, . . . , `t−1, the learning algorithm always plays a fixed action It. Then in round t, the adver-
sary sets the loss vector as follows:

`t =
{

(1, 0) if It = 1
(0, 1) if It = 2.

(1)

Then, on the one hand, we have

T∑
t=1

`It,t = T,

while on the other hand, we have

T∑
t=1

2∑
j=1

`j,t = T ⇒ min
j=1,2

T∑
t=1

`j,t ≤
T

2 ,

and so the regret exhibits the hopelessly linear growth T
2 .

Moreover, the adversary is oblivious, since it can simulate the deterministic learning algorithm
to identify a sequence of losses satisfying (1) for all t ∈ [T ].
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1.2 Expected regret and pseudo-regret

Because the learning algorithm must (and the adversary may) randomize, our interest will be in
studying regret bounds that hold in expectation. It is also possible to develop bounds that hold
with high probability, but this is beyond the scope of this course.

The expected regret is

E[RT ] = E
[
T∑
t=1

`It,t − min
j∈[K]

T∑
t=1

`j,t

]
.

A related notion of regret is known as the pseudo-regret, defined as

R̄T = E
[
T∑
t=1

`It,t

]
− min
j∈[K]

E
[
T∑
t=1

`j,t

]
.

In this first study of the non-stochastic setting, our focus will be on obtaining bounds on the
pseudo-regret rather than the expected regret, because:

1. It is simpler to upper bound the pseudo-regret;

2. If the adversary is oblivious, an upper bound on the worst-case pseudo-regret is also an upper
bound on the worst-case expected regret.

The first observation is true because

R̄T ≤ E[RT ], (2)

which follows from the rewrite

max
j∈[K]

E
[
T∑
t=1

`It,t −
T∑
t=1

`j,t

]
≤ E

[
max
j∈[K]

{
T∑
t=1

`It,t −
T∑
t=1

`j,t

}]
, (3)

An upper bound on the expected regret is thus also an upper bound on the pseudo-regret.
Let’s see why the second observation is true. First, suppose that the adversary is deterministic;

this is a special case of an oblivious adversary. The pseudo-regret then reduces to

R̄T = E
[
T∑
t=1

`It,t

]
− min
j∈[K]

T∑
t=1

`j,t = E
[
T∑
t=1

`It,t − min
j∈[K]

T∑
t=1

`j,t

]
= E[RT ], (4)

which is just the expected regret. Thus, in the special case of deterministic adversaries, the pseudo-
regret is equal to the expected regret. Next, suppose that the adversary is oblivious but might also
randomize. Let B denote the randomization of the adversary. Then, since the adversary is oblivious,

E [RT ] = EB [E [RT | B]] .

Next, observe that since the learning algorithm is fixed, it holds that

EB [E [RT | B]] ≤ sup
`1,...,`T

E [RT ] ;

we thus see that the expected reget under an oblivious adversary is upper bounded by the worst-
case expected regret under a deterministic adversary; also, the inequality becomes an equality if
we instead consider the worst-case expected regret under an oblivious adversary.

Combining this fact with (4), we have

sup
oblivious

E [RT ] = sup
deterministic

E [RT ] = sup
deterministic

R̄T . (5)

Thus, in order to upper bound the worst-case expected regret under a oblivious adversary, it
suffices to upper bound the worst-case pseudo-regret under a deterministic adversary.
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2 Exp3
We will now study an algorithm called Exp3; thsi algorithm obtains low pseudo-regret (and hence
low expected regret against an oblivious adversary). The idea of Exp3 is to try to use an exponential
weights-type algorithm, but the usual exponential weight updates are not directly possible since
we only observe the loss of the arm we pull in each round. Exp3 instead maintains estimates of the
losses based on the information it observes, and it updates its weights using these loss estimates
instead.

Let’s first look at how Exp3 forms its loss estimates. Similar to Hedge and the exponentially
weighted average forecaster, in each round Exp3 maintains a distribution over actions. In round t,
Exp3 pulls an arm It drawn from a distribution pt. For each arm i ∈ [K], it then estimates the loss
`i,t as

˜̀
i,t = `i,t

pi,t
· 1{It=i} .

The reason for this choice of loss estimate is that ˜̀
i,t is an unbiased estimator of `i,t, since

EIt∼pt
[
˜̀
i,t

]
=

K∑
j=1

pj,t
`i,t
pi,t
· 1{j=i} = `i,t. (6)

The full algorithm is shown below. We use the notation L̃i,t =
∑t
s=1

˜̀
i,s.

Algorithm 1. Exp3

Given: η > 0
Set pj,1 = 1

K for j = 1, . . . ,K

For t = 1, . . . , T :

1. Draw arm It according to probability distribution pt

2. For i ∈ [K], compute loss estimate ˜̀
i,t = `i,t

pi,t
· 1{It=i}

3. For i ∈ [K], set pi,t = e−ηL̃i,t∑K
j=1 e

−ηL̃i,t
.

The next result upper bounds the pseudo-regret of Exp3.

Theorem 1. If Exp3 is run with the learning rate η =
√

2 logK
TK , then for any adversary,

R̄T ≤
√

2TK logK.

From (5), Exp3 enjoys the same upper bound for the expected regret E[RT ] under any oblivious
adversary.

We will use the following lemma to prove Theorem 1.

Lemma 1. Let X be a nonnegative random variable. Then

log E
[
e−X

]
+ E[X] ≤ E

[
X2

2

]
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Proof. We first use the inequality log x ≤ x− 1, which gives

log E
[
e−X

]
+ E[X] ≤ E

[
e−X − 1 +X

]
. (7)

Next, we use the following inequality1:

e−x − 1 + x ≤ x2

2 for x ≥ 0. (8)

Applying (8), the right-hand side of (7) is at most E
[
X2

2

]
.

Proof of Theorem 1. To upper bound the pseudo-regret, it suffices to upper bound the expected
regret against an arbitrary arm k ∈ [K], i.e. to upper bound:

E
[
T∑
t=1

`It,t −
T∑
t=1

`k,t

]

We will proceed by deriving an upper bound on
∑T
t=1 `It,t, and near the end of the proof we

will take the full expectation of this quantity.
The first step is to express each instantaneous loss in terms of a certain expectation of a loss

estimate. To this end, observe that for each t ∈ [T ],

Ei∼pt
[
˜̀
i,t

]
= `It,t,

and so the cumulative loss of Exp3 can be expressed as

T∑
t=1

Ei∼pt
[
˜̀
i,t

]
.

The next step is to upper bound each of the individual terms in this summation. We begin
with the trivial, yet useful, observation that2

η Ei∼pt [˜̀i,t] = log Ei∼pt
[
e−η

˜̀
i,t

]
+ η Ei∼pt [˜̀i,t]− log Ei∼pt

[
e−η

˜̀
i,t

]
.

Applying Lemma 1 for X = η ˜̀
i,t and dividing by η, we have

Ei∼pt [˜̀i,t] ≤
η

2 Ei∼pt
[
(˜̀
i,t)2

]
− 1
η

log Ei∼pt
[
e−η

˜̀
i,t

]
≤ η

2pIt,t
− 1
η

log Ei∼pt
[
e−η

˜̀
i,t

]
. (9)

1To see why (8) holds, observe that

e−x − 1 + x− x2

2 = −x3

3! + x4

4! − x5

5! + . . . .

The right-hand side is zero for x = 0. It is enough to verify that the first derivative is nonpositive for all x ≥ 0. For
this, observe that the first derivative also is zero for x = 0, and so it is enough to verify that the second derivative is
nonpositive for all x ≥ 0. For this, observe that the third derivative is equal to −e−x, which is of course nonpositive
for all x ≥ 0. Thus, going backwards, all of the required conditions are satisfied, and (8) indeed holds.

2Note that η E[X] + log E
[
e−ηX] = log E

[
e−η(X−E[X])], the cumulant generating function of the centered random

variable X − E[X], evaluated at η. This offers another interpretation of Lemma 1.
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We now focus on the second term in (9). From the definition of pt, we have

log Ei∼pt
[
e−η

˜̀
i,t

]
= log

∑K
i=1 e

−ηL̃i,t−1e−η
˜̀
i,t∑K

i=1 e
−ηL̃i,t−1

= log
∑K
i=1 e

−ηL̃i,t∑K
i=1 e

−ηL̃i,t−1
.

Therefore, summing (9) over t ∈ [T ], the second term of (9) becomes a telescoping series, yielding

T∑
t=1

Ei∼pt [˜̀i,t] ≤
T∑
t=1

η

2pIt,t
+ 1
η

log
K∑
i=1

e−ηL̃i,0 − 1
η

log
K∑
i=1

e−ηL̃i,T

=
T∑
t=1

η

2pIt,t
+ logK

η
− 1
η

log
K∑
i=1

e−ηL̃i,T

≤
T∑
t=1

η

2pIt,t
+ logK

η
− 1
η

log e−ηL̃k,T

=
T∑
t=1

η

2pIt,t
+ logK

η
+

T∑
t=1

˜̀
k,t.

Finally, taking the expectation yields

E
[
T∑
t=1

`It,t

]
= E

[
T∑
t=1

Ei∼pt
[
˜̀
i,t

]]

≤ E
[
T∑
t=1

η

2pIt,t
+ logK

η
+

T∑
t=1

˜̀
k,t

]

= E
[
T∑
t=1

EIt∼pt

[
η

2pIt,t

]
+ logK

η
+

T∑
t=1

EIt∼pt
[
˜̀
k,t

]]

= E
[
TKη

2 + logK
η

+
T∑
t=1

`k,t

]
,

where the first equality is from the law of total expectation and the second equality follows from
direct computation of EIt∼pt

[
1

pIt,t

]
= K and the fact that ˜̀

k,t is an unbiased estimator of `k,t (recall

(6)). The result follows by plugging in the value η =
√

2 logK
TK .

Theorem 1 is not directly useful when the time horizon T is unknown. However, by using
the doubling trick, one can obtain the same upper bound with a larger constant. Alternatively,
Exp3 can be run using a time-varying learning rate of ηt =

√
logK
tk to yield pseudo-regret at most

2
√
TK logK. The proof becomes somewhat more involved; if you are interested, see Theorem 3.1

of Bubeck and Cesa-Bianchi (2012).
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