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1 Stochastic convex optimization

A stochastic convex optimization problem is specified by a probability distribution P over a set Z,
a convex set W, and a function f: W x Z — R that is convex in its first argument. The goal is to
find some w € W which minimizes the objective

F(w) = EZNP [f(w, Z)]

We will use w* € W to denote an arbitrary minimizer of F, so that F(w*) = min,ew F(w).
Supervised learning with linear predictors can be recovered by:

e taking Z =X x Y, so that Z = (X,Y);

e defining f(w,z) = f(w,(x,y)) = {({w,x),y) for some loss function £: R x ) — R that is
convex in its first argument.

In order to approximately minimize the objective F'(w), a learning algorithm will be presented
with i.i.d. samples Z1, ..., Zr distributed according to P, similar to the statistical learning setting.

We will study algorithms for solving the stochastic optimization problem based on online convex
optimization and a technique known as an online-to-batch conversion. The idea will be to first frame
an online version of the above problem as an online convex optimization problem, to use online
gradient descent to obtain low regret for this problem, and finally to obtain a single recommended
prediction @ whose excess risk F(w*) — F(w) is bounded by the regret (averaged over rounds) of
online gradient descent; here, the bound on the excess risk will hold either in expectation or with
high probability.

First, observe that for each ¢ € [T], we may define the cost function ¢;(w) = f(w, Z;). We may
thus use the online gradient descent algorithm to obtain low regret, i.e., to ensure that

is not too large.

Stochastic gradients and connection to gradient descent. Note that since we take ¢;(w) =
f(w, Z;) and the (Z;);c(p) are i.i.d., the cost functions themselves are thus i.i.d. This implies that,
for any fixed w € W, the gradient Ve (w) = V f(w, Z;) is stochastic and satisfies

E[Ve(w)] = E[Vf(w, Z)] = VE[f(w, Z,)] = VF(w).

Thus, for fixed a fixed action w, the stochastic gradient Ve¢i(w) is an unbiased estimator of the
gradient VF'(w), and taking a step of the right size in the direction of the negative gradient should
in expectation move us towards the optimum w*.



However, online gradient descent uses gradients evaluated at the played action w;, which can
depend on Zf_l = (Z1,...,Zs—1) and hence which itself is stochastic. However, by conditioning on
771 w; becomes fixed and so

E {Vct(u)t) | Z{_l] =E [Vf(wt,Zt) | Zf_l]
— VEf(we, %) | 217
=VE {F(wt) | Zf_l}
= VF(wy).

Thus, conditional on the past, the stochastic gradient Ve¢;(w;) is an unbiased estimator of the
gradient VF'(w;). Intuitively, stochastic gradient descent (which is just online gradient descent
with stochastic gradients as above) should make progress towards minimizing F'.

2 Online-to-batch conversion

Suppose that an online learning algorithm that plays wq, ..., wr against the sequence Z1,..., Zr
obtains regret Ry.! We will prove that the simple average wr = %Zthl obtains low excess risk
whenever Rp is small.

We will derive an in-expectation bound using elementary arguments and then a high probability
bound using a more sophisticated martingale-based argument. For both parts, our starting point
will be the simple inequality

) 1<
F(@r) < 7 3 Flw),

which holds from the convexity of f in its first argument, since

1 & 1 & 1<
F(wr) =Ez.p [f (T Zwt,Zﬂ <Ez.p [TZf(wt,Z)l = TZF(wt)‘
t=1 t=1 t=1

!Note that Ry is a random variable by way of its dependence on Z1, ..., Zr.




2.1 Warm-up: In-expectation bound

Observe that

t=1 t=1
1< - t—1
=7 ; E[f(we, Z4)] (Z and Z; are i.i.d. and w; depends only on Z7 ")
1T
=E *Zf(wtvzt)
ri=
a 1
= L}gév = ; flw, Zy) | + T E[Rr] (by definition of the regret Rr)
T
< inf E|= VA —E
Jnf B> f(w, Z)| + = E[Rr]

So, an upper bound on expected regret implies an upper bound on the expected excess risk of wr.
With a little more work, we can establish a similar guarantee that holds with high probability with
respect to Z1,..., Zr.

2.2 High probability bound

In order to obtain a high probability bound, we will develop some machinery to analyze stochas-
tic processes. The development here will be somewhat informal to keep things accessible. Let
X1,Xo,..., X7 be a stochastic process, and let each X; be measurable with respect to a history
H;. Informally, this means that X; is deterministic given H;. We say that the process Xi,..., X
is a martingale difference sequence if, for all t € [T], both of the following hold:

o E[[Xil] <oo;
o E [Xt | Htfl] = 0.

The following concentration inequality is known as Hoeffding-Azuma’s inequality, also com-
monly referred to as Azuma’s inequality.

Theorem 1. Let X1, Xs,..., X7 be a martingale difference sequence such that, for all t € [T,
| X¢| < B with probability one. Then for all € > 0,

T 2
93
Pr <t:E . Xt 2 8) S exp <—m> .

We now begin proving a high probability excess risk bound for wy. Define for each ¢ € [T1,
X, = f(w', %) — flws, Z) — E[f(w*, Z0) — f(wn, Z2) | 28]
= f(w*, Zy) = f(wi, Zt) — (F(w*) — F(wy))

As we will see, X1,..., X is a martingale difference sequence and will play a key role in our
analysis.



Observe that

1 & 1 & 1 &
*ZF(wt):F(W*)JFTZ(f(wtaZt)—f(W* Zt)) TZXt
t=1 t=1 t=1

T

Rr 1

Now, for each ¢ € [T] it holds that E [Xt | Zf_l} = 0. Moreover, if we assume that | f(w, Z)| < B

for all w € W and Z € Z, then it holds that |X;| < 4B. Therefore, under this boundedness
assumption, X1,..., X7 is a martingale difference sequence.
Applying Theorem 1, we see that with probability at least 1 — ¢,

T / 1
Rt 2log 5
— +4B{| —°.
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