
Machine Learning Theory (CSC 482A/581B) - Lectures 3 and 4

Nishant Mehta

1 Towards Statistical Learning: the Consistency Model
We now begin our study of the first major component of this course: statistical learning theory. Our
starting point will be classification in the statistical learning setting (recall the protocol introduced
in Lecture 1) under the realizability assumption.

Let’s review the statistical learning protocol in the realizable case. Let C ⊂ 2X be a fixed and
known concept class.

1. Nature selects a distribution P over the input space X and selects a concept c ∈ C.

2. Learner is given a training set of n labeled examples (x1, y1), . . . , (xn, yn), where each xj is
drawn i.i.d. from P and each yj = c(xj).

3. Learner wishes to select a hypothesis f in some hypothesis space F which obtains low risk
with respect to 0-1 loss, i.e., for which the misclassification probability PrX∼P (f(X) 6= c(X))
is small.

A natural approach for Learner is to take F = C and select any hypothesis f ∈ F which is
consistent with the training sample.

Definition 1. A hypothesis f : X → Y is consistent with training sample (x1, y1), . . . , (xn, yn) if
f(xj) = yj for all j ∈ [n].

If we are lucky and have a training sample that is representative of the actual distribution, then
it will be the case that the empirical risk

1
n

n∑
j=1

1[f(xj) 6= c(xj)]

is close to the true risk

R(f) = EX∼P
[
1[f(X) 6= c(X)]

]
= PrX∼P

(
f(X) 6= c(X)

)
.

In this lucky event, minimizing the empirical risk is a good proxy for minimizing the actual risk.
For now, we will consider the algorithmic question of how to find a hypothesis consistent with

the training sample. Once that is settled, at least in a few scenarios, we will directly address the
question of how much data we need before the empirical risk is “close enough” to the true risk;
answering this question is critical if we wish to justify algorithms that attempt to minimize the
empirical risk.

Definition 2. An algorithm A learns a class C in the consistency model if, for any training set
(x1, y1), . . . , (xn, yn), the algorithm outputs a concept f ∈ C consistent with the training set if one
exists and otherwise outputs False (indicating that no such concept exists in C).
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As before, our primary interest is in efficient algorithms, whose runtime is polynomial in the number
of examples n and the size of an example (typically the dimension of the data, d). Note that unlike
the mistake bound model, our algorithm must also handle the situation where the examples were
not labeled according to any concept c ∈ C.

2 Examples of learning in the consistency model

2.1 Monotone conjunctions

When C is the class of monotone conjunctions over {0, 1}d, we can reuse the key idea for learning
monotone conjunctions in the mistake bound model:

Start with the conjunction of all variables x1 ∧x2 ∧ . . .∧xd, and kick out any feature
which takes the value of 0 in some positive example. If this conjunction is consistent
with the negative examples, output the conjunction; otherwise, output False.

Analysis. The resulting hypothesis, call it f̂ , only kicks out features when necessary to be con-
sistent with the positive examples, and thus subject to this constraint, it tries to label as many
examples as negative as possible. Therefore, if there is a monotone conjunction consistent with the
data, then f̂ can never make a mistake on a negative example and hence is consistent with the
data. If f̂ does make a mistake on a negative example, then no monotone conjunction is consistent
with the data, and so the algorithm should indeed output False.

Efficiency. The above algorithm is efficient; its runtime is O(dn), since it only needs to inspect
each feature of each example at most once.

Extensions. The class of monotone disjunctions, concepts of the form xj1 ∨xj2 ∨ . . .∨xjk for
k ∈ {0, 1, . . . , d}, can be learned in an identical way if we first transform the data as follows:

• Flip the sign of each label.

• For each example x, replace each feature xj by its negation x̄j = 1− xj .

Learning monotone disjunctions over the original data is now equivalent to learning monotone
conjunctions on the transformed data.

We leave as a simple exercise the task of efficiently learning (not necessarily monotone) con-
junctions over {0, 1}d in the consistency model: a conjunction is of the form (e.g.) x̄2 ∧x4 ∧x7.
Another good exercise is to design an algorithm for efficiently learning k-CNF, the class of for-
mulas in conjunctive normal form for which each clause has at most k terms. For instance,
x1 ∧(x̄1 ∨x2)∧(x3 ∨ x̄4) is an example of a concept in 2-CNF. A related exercise is the task of
learning k-DNF, the class of formulas in disjunctive normal form for which each clause has at most
k terms. For instance, x̄1 ∨(x1 ∧ x̄2)∨(x̄3 ∧x4) is an example of a concept in 2-DNF.

2.2 Linear separators

Suppose that we are learning homogeneous linear separators in the realizable case, where there
exists a hypothesis w∗ obtaining margin γ > 0 over the training sample (x1, y1), . . . , (xn, yn). We
later will see a simple way to find a w consistent with the data using the Perceptron algorithm.
However, rather than using Perceptron, it is possible to try and find such a w directly.
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Without loss of generality, assume that w∗ has unit norm. Since w∗ obtains margin γ over the
training sample, it holds that

yj〈w∗, xj〉 ≥ γ for all j ∈ [n].

Therefore, taking w̃ = w∗

γ , we have

yj〈w̃, xj〉 ≥ 1 for all j ∈ [n].

Clearly, this vector w̃ induces a linear separator consistent with the data, and so we need only
find some w ∈ Rd which satisfies the linear constraints

yj〈w, xj〉 ≥ 1 for all j ∈ [n].

We can find such a vector using linear programming. A linear program is an optimization
problem which has a linear objective and linear constraints. In our case, we do not have an
objective, and so we simply set the parameter for the objective to be equal the zero vector 0.
Framed as a linear program, our task becomes

minimize
w∈Rd

〈0, w〉

subject to 〈w, yj xj〉 ≥ 1, j = 1, . . . , n.

There is a rich theory for solving linear programs, which includes efficient (polynomial time) algo-
rithms. Thus, it is possible to learn linear separators efficiently in the consistency model.

3 The PAC Model
In statistical learning, the goal is to minimize the expected loss with respect to a probability
distribution P , but rather than having knowledge of P , Learner instead only has random samples
drawn from P . Consequently, whenever Learner outputs a hypothesis, it cannot with complete
certainty guarantee that the hypothesis obtains zero risk, or even risk bounded by some level ε < 1.
In many situations, what Learner can guarantee is that with some confidence, say probability 1− δ
with respect to the sample of data, the hypothesis has risk at most ε.

The PAC model of learning formalizes this style of guarantee. The acronym PAC stands for
Probably Approximately Correct; informally, an algorithm learns in the PAC model if it Probably
(with confidence 1− δ) outputs a hypothesis which is Approximately Correct (has risk at most ε).

Before providing the formal definition of the PAC model, let’s see an example of a PAC-style
(ε, δ)-style guarantee.

3.1 A first PAC-style guarantee

Consider the lowly problem of learning monotone conjunctions. Suppose that we run our algorithm
for learning monotone conjunctions in the consistency model, thereby obtaining a conjunction f̂
consistent with the training sample (x1, y1), . . . , (xn, yn). We then wonder how large the true risk
of f̂ might be. The following guarantee holds for any finite class C, which includes the class of
monotone conjunctions as a special case.
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Theorem 1. Let C be a finite concept class, let P be a fixed distribution over X , and consider a
learning algorithm A that, given a training sample, outputs a hypothesis f̂ ∈ C. For any ε > 0 and
any δ ∈ (0, 1), if

n ≥
log |C|+ log 1

δ

ε
,

then, with probability at least 1−δ over the draw of X1, . . . , Xn from P , it holds that if f̂ is consistent
with the training sample (X1, c(X1)), . . . , (Xn, c(Xn)), then f̂ has risk at most ε.

Before giving the proof, note that applying the above result in the case of monotone conjunctions
immediately yields the following corollary, since for this class we have |C| = 2d.

Corollary 1. Let C be the class of monotone conjunctions over {0, 1}d, let P be a fixed distribution
over X , and consider a learning algorithm A that, given a training sample, outputs a hypothesis
f̂ ∈ C. For any ε > 0 and any δ ∈ (0, 1), if

n ≥
d log 2 + log 1

δ

ε
,

then, with probability at least 1−δ over the draw of X1, . . . , Xn from P , it holds that if f̂ is consistent
with the training sample (X1, c(X1)), . . . , (Xn, c(Xn)), then f̂ has risk at most ε.

Proof (of Theorem 1). The idea is to first bound the probability that a fixed hypothesis f ∈ C is
consistent with the data but has risk greater than ε. This probability is equivalent to the probability
of drawing zero successes in n independent Bernoulli trials when the success probability exceeds ε;
this latter probability is of course strictly less than (1− ε)n.

Next, we bound the probability that f̂ is consistent with the training sample but has risk greater
than ε. In the below, the probability is taken with respect to (X1, . . . , Xn).

Pr
((
R(f̂) > ε

)
and

(
f̂(Xj) = c(Xj) for all j ∈ [n]

))
≤ Pr

(
∃f ∈ C such that (R(f) > ε) and (f(Xj) = c(Xj) for all j ∈ [n])

)
≤

∑
f∈C with R(f)>ε

Pr
(
f(Xj) = c(Xj) for all j ∈ [n]

)
.

The first inequality holds because f̂ takes values in C, and the second inequality is the union bound.
Now, the last line above can be coarsely be upper bounded by |C|(1− ε)n.

Thus, the probability of the “bad event” that f̂ is consistent with the training sample, yet has
risk exceeding ε, is at most |C|(1 − ε)n. Using the inequality 1 − x ≤ e−x, this probability is at
most |C|e−nε. It remains to set δ = |C|e−nε and solve for n, yielding n = log |C|+log 1

δ
ε .

Here is an intuitive way to think about the above result: suppose that there is a bad hypothesis
with risk greater than ε. What is the probability that this hypothesis gets zero error on the training
data and thus tricks us into thinking it is a good hypothesis. The proof first bounds this probability
of being tricked. Now, if there are many bad hypotheses (perhaps as many as |C| − 1 of them in
the worst case), we try to control the probability that any of them trick us. A coarse way to do
this is to just via a union bound, which scales with the number of hypotheses. Thus, the larger |C|
is, the more data we need to avoid being tricked, as otherwise we might overfit.
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3.2 PAC Learning

Definition 3. We say that C is PAC learnable if there exists an algorithm A which, for any
concept c ∈ C, for every distribution P over X , and for all ε > 0 and δ ∈ (0, 1), satisfies the
following guarantee: if A is given access to examples drawn from P and labeled according to c,
then with probability at least 1− δ, A outputs a hypothesis f̂ ∈ C with risk Pr(f̂(X) 6= c(X)) ≤ ε.

We say that C is efficiently PAC learnable if, in addition,

• A uses a number of examples polynomial in d, 1
ε , and

1
δ ;

• A runs in time polynomial in d, 1
ε , and

1
δ .

In the above definition of efficient PAC learnability, d refers to the dimension of X . If C is
(efficiently) PAC learnable using algorithm A, then we say that A (efficiently) PAC learns C.

Remarks:

• Computational learning theorists also demand efficient PAC learnability, so that the algorithm
runs in polynomial time.

• The original definition of efficient PAC learnability, due to Leslie Valiant, also requires that the
number of examples and runtime be polynomial in a quantity |c| known as the representation
size of c; this quantity may be thought of as the number of bits used to represent concept c in
some representation/encoding of C. As this is more crucial in computational learning theory
rather than statistical learning theory, we will not discuss this point further and have not
referred to |c| in our definition of efficient PAC learnability. From a statistical perspective,
|c| will not matter. For those interested, this point is covered in detail in the computational
learning theory book of Kearns and Vazirani (1994).

In a last crucial remark, we introduce the fundamental notion of sample complexity.

Definition 4. The sample complexity nC : (0, 1)2 → N of learning a concept class C is the function
which, given any ε ∈ (0, 1) and any δ ∈ (0, 1), specifies the minimum number of examples nC(ε, δ)
needed to PAC learn C to risk ε with confidence 1− δ.

The sample complexity of learning C is a purely statistical notion: it does not take into account
the runtime of the algorithm. In statistical learning theory, our primary interest is providing upper
and lower bounds on the sample complexity. As we will see when we study the VC dimension, a
class C is PAC learnable only if its sample complexity is polynomial in 1

ε and log 1
δ .

4 Connections between learning models
We have now seen three models of learning:

• the mistake bound model;

• the consistency model;

• the PAC model.

There are strong connections between these models. We will explore four connections. The first
relates the mistake bound model to the consistency model.
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Theorem 2. If C is learnable in the mistake bound model, then C is learnable in the consistency
model.

Proof. It will be useful to assume that the learning algorithm is a conservative learner, meaning that
the algorithm changes its current hypothesis only when it makes a mistake. This assumption is not
problematic, because given any algorithm A which makes at most M mistakes on any sequence of
examples, we can convert this algorithm into a conservative learner A′ which has the same mistake
bound, as follows:

AlgorithmA′ behaves exactly asA except when the latter updates its current hypothesis
after predicting correctly, in which case A′ does not update its current hypothesis.

To analyze the number of mistakes made by A′, observe that the behavior of this algorithm (in
terms of updates and mistakes) is the same as the behavior of A were it run only on the subsequence
examples on which it makes mistakes. Since A makes at mostM mistakes on any sequence, it holds
that A′ satisfies this same mistake bound.

Now, let A′ be a conservative algorithm that learns C in the mistake bound model. Then, for
any sequence of examples labeled according to some concept c ∈ C, A′ will make at most finitely
many mistakes.

Next, consider a training set (x1, y1), . . . , (xn, yn) labeled according to some c ∈ C. The following
algorithm obtains a hypothesis consistent on the training set:

1. Run A′ on the sequence of examples in the training set.

2. If A′ made at least one mistake in this run, then go back to 1. Otherwise, output the current
hypothesis of A′

The above algorithm eventually terminates because A′ only makes a finite number of mistakes on
any sequence, which includes as a special case the sequence formed by multiple concatenations
of the training set with itself. When the algorithm terminates, no mistakes were made over the
training set, and so the current hypothesis is consistent with the training set.

The next connection is one that we essentially already proved via Theorem 1.

Theorem 3. If C is finite and learnable in the consistency model, then C is PAC learnable.

Proof. If A learns C in the consistency model, then applying Theorem 1 with this choice of A yields
the desired PAC-style guarantee.

The above two theorems immediately imply the following corollary.

Corollary 2. If C is finite and learnable in the mistake bound model, then C is PAC learnable.

Requiring C to be finite is a serious restriction, and in fact, this restriction can be dispensed
with entirely.

Theorem 4. If C is learnable in the mistake bound model, then C is PAC learnable.

Proof. Let A be an algorithm that learns C in the mistake bound model, and suppose that it makes
at most M mistakes on any sequence of examples. Without loss of generality, we will restrict our
analysis to conservative learners; let A′ be the conservative learner corresponding to A (recall the
construction from the proof of of Theorem 2). Therefore, A′ also makes at most M mistakes on
any sequence of examples, and it updates its current hypothesis only when it makes a mistake.

Now, let’s consider a few possibilities.
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• Suppose that the first hypothesis f0 used by A′ (the one prior to making any mistakes)
correctly classifies the first ñ = log 1

δ′
ε examples, for some δ′ ∈ (0, 1). If the risk of f0 is greater

than ε, this can only happen with probability at most (1 − ε)ñ. Thus, with probability at
least 1− δ′, it holds that f0 has risk at most ε, and we are done.

• If instead, f0 made a mistake on one of the first ñ examples, then we make the same argument
with f1 and another ñ examples.

• This argument eventually terminates, since A′ makes at mostM mistakes: afterMñ examples
we are guaranteed to have a hypothesis which correctly classifies at least ñ examples.

The above argument motivates the following PAC learning algorithm APAC:

1. Draw a training set from P (and labeled according to c ∈ C) of size n = M log M
δ

ε .

2. Feed the sequence of examples in the training set into A′ and stop when either of the following
hold:

• the current hypothesis correctly classifies log M
δ

ε examples;
• A′ has made M mistakes.

3. Output the algorithm’s current hypothesis.

From the mistake bound, the algorithm produces a sequence of hypotheses h1, h2, . . . of length
at most M + 1. If the algorithm stops on a hypothesis hm for m ≤ M , then hm was consistent
with log M

δ
ε examples; this can only happen with probability δ

M if in fact R(hm) > ε. Therefore, the
probability that one of the first M hypotheses is returned but actually has risk exceeding ε is at
most δ. If hM+1 is returned, the algorithm will never make a mistake again, and so hM+1 certainly
(with probability 1) cannot have risk exceeding ε

So, the above algorithm satisfies the following guarantee:

With probability at least 1−δ, the hypothesis output by APAC when run on the training
set has risk at most ε.

5 Relaxing the PAC model
Improper learning The PAC model of learning is a nice first model, but it can be unnecessarily
restrictive if our ultimate goal is prediction rather than identifying the correct concept c ∈ C;
the latter is sufficient, but hardly necessary. In the PAC model as defined above, we took the
hypothesis space F equal to the concept class C; this version of PAC learning is called proper PAC
learning. We can and will instead also consider improper PAC learners; these learning algorithms
use a hypothesis space F which strictly contains C and hence can be much richer.

Is there any advantage to using improper learners? The answer is yes, at least under the widely
believed assumption that1 RP 6= NP . Under this assumption, the concept class C of 3-term DNF
formulas is not PAC learnable by any proper learner, but it is PAC learnable by an improper
one. Here, the input space is {0, 1}d, and the concept class consists of disjunctions of three terms,

1RP (randomized polynomial time) is a complexity class.
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with each term being a conjunction of an arbitrary number of literals. For example, the following
formula is an instance of this class:

(x1 ∧ x̄2 ∧ x̄3 ∧x4)∨(x̄1 ∧x3 ∧ x̄5 ∧x6 ∧ x̄7)∨(x2 ∧x7).

The hardness result involves showing that a graph is 3-colorable if and only if a certain training
set is consistent with some 3-term DNF formula. Thus, properly PAC learning the class of 3-term
DNFs is as hard as the graph 3-coloring decision problem.

On the other hand, there is a very simple improper PAC learner for this class. Observe that
from the distributive law, every 3-term DNF formula can be expressed as a concept in 3-CNF.
Thus, any proper PAC learner for 3-CNF can be used to PAC learn 3-term DNF.

Further relaxations. In the next lecture, we will begin our study of agnostic learning by relaxing
two very strong assumptions inherent to the PAC model:

• that our hypothesis space contains c;

• that there even exists a perfect hypothesis.
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