
Machine Learning Theory (CSC 482A/581B) - Lectures 5 and 6

Nishant Mehta

1 Agnostic Learning
From now on, we will study the agnostic learning setting, wherein the labels themselves can be
random conditional on the input. Thus, the distribution P is now a joint distribution over X ×Y.
In PAC learning, it made sense to analyze the rate of convergence of a learning algorithm’s risk
R(f̂) to zero as the sample size n increases; however, in the agnostic setting it may no longer be the
case that there exists a hypothesis from the set F̄ of all possible hypotheses that obtains zero risk.1
A more sensible goal is to hope for a learning algorithm for which the excess risk with respect to
the best possible hypothesis decays to zero as n → ∞. Let’s therefore study the behavior of this
best possible hypothesis.

1.1 Bayes classifier

Definition 1. The Bayes risk R∗ is defined as the minimum risk among all possible hypotheses:2

R∗ = inf
f∈F̄

R(f).

A Bayes optimal classifier, or Bayes classifier, is a hypothesis f which obtains the Bayes risk:

R(f) = R∗.

What form does a Bayes classifier take? For an input x ∈ X , it is easy to see that the conditional
risk E[1[ŷ 6= Y ] | X = x] = Pr(ŷ 6= Y | X = x) is minimized by predicting

ŷ ∈ arg max
y∈{0,1}

Pr(Y = y | X = x).

Hence, by arbitrarily breaking ties in favor of the positive class, we take the Bayes classifier to be

fBayes(x) = 1[Pr(Y = 1 | X = x) ≥ 1/2] .

1.2 Minimizing excess risk with respect to fBayes is hopeless

Now that we have defined the excess risk with respect to fBayes, a natural question arises:

For a fixed input space X , is there a learning algorithm A for which, no matter the
distribution P , for any ε > 0 and δ ∈ (0, 1), there is a sample size n(ε, δ) (not depending
on P ) such that R(f̂)−R∗ ≤ ε with probability at least 1− δ?

1Technically, whenever I refer to the set of all possible hypotheses, I actually mean the set of all measurable
hypotheses. If you do not know what the term “measurable” means, do not worry about this footnote.

2If you do not know what inf means: if you are an undergrad, inf stands for “infimum”, and you may think of it
roughly as “minimum”. If you are a graduate student, you should familiarize yourself with infimums and supremums.
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Such a learning algorithm would be a universal learner, as it performs well against any distribution
P . Unfortunately, this is not possible, as shown by the following “No-Free-Lunch” result:

In agnostic learning, for any learning algorithm and sample size n, there is a distribution
P ∈ ∆(X×Y) with deterministic labels under which, with constant positive probability,
R(f̂) is lower bounded by a positive constant.

Remarks:

• Since the label Y is deterministic given X, we have P (Y = 1 | X) ∈ {0, 1}; consequently,
there is a perfect labeling function, and hence R(f̂)−R∗ = R(f̂).

1.3 The Agnostic Model

In light of the impossibility result of competing with hypothesis fBayes, we will instead compete
against the best hypothesis within our hypothesis space F .

Let f∗ be a hypothesis in F that minimizes the risk (under distribution P ), so that

R(f∗) = inf
f∈F

R(f).

Definition 2. We say that F is agnostically learnable if there exists an algorithm A and a function
n : (0, 1)2 → N which, for any distribution P over X ×Y and for all ε ∈ (0, 1) and δ ∈ (0, 1), satisfy
the following guarantee:

If A is given access to n(ε, δ) labeled examples drawn i.i.d. from P , then with probability at
least 1− δ, A outputs a hypothesis f̂ with excess risk R(f)−R(f∗) ≤ ε.

We say that F is efficiently agnostically learnable if, in addition, A runs in time polynomial in
1
ε and 1

δ .

As with PAC learning, we can also require A to output hypotheses in F (so that A is proper).
If F is agnostically learnable by such an algorithm, then F is proper agnostically learnable.

1.4 Error decompositions

Decomposition of excess risk into approximation error and estimation error

Consider a learning algorithm A which, given a training sample S, outputs some hypothesis f̂ ∈ F .
The excess risk of f̂ with respect to the Bayes classifier can be decomposed as

R(f̂)−R∗ =
(
R(f∗)−R∗

)︸ ︷︷ ︸
approximation error

+
(
R(f̂)−R(f∗)

)︸ ︷︷ ︸
estimation error

. (1)

The first term in the decomposition is the approximation error : it is a measure of how well the
class F can approximate the Bayes classifier in terms of risk; if fBayes ∈ F , then the approximation
error is zero. Bounding the approximation error requires knowledge of R∗ or some partial infor-
mation about fBayes, and in settings where little or no distributional assumptions are made, it is
thus very difficult if not impossible to control the approximation error. Note, however, that if we
begin making certain assumptions about P and if we allow F to grow with n (so that at sample
size n Learner outputs a hypothesis in Fn), then it is possible to obtain rates of convergence of the
approximation error to zero.
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The second term in the decomposition is the estimation error. Unlike the approximation error,
provided that F is not “too large” it is possible to obtain good bounds on the estimation error in
a distribution-free way, i.e. without having any information about the underlying distribution P .
How does the estimation error typically depend on F? As we will soon see, for learning algorithms
that return hypotheses that have low empirical risk, the estimation error increases with |F|. This
accords with our intuition that, information-theoretically, we need more bits of information to
“whittle down” F to the risk minimizer (or set of risk minimizers) as F increases in size.

The decomposition (1) into approximation error and estimation error highlights the familiar
trade-off between model expressivity and generalization. As we increase the size (complexity) of
our model F , the approximation error decreases since the model can express more patterns; si-
multaneously, however, it becomes more likely that we will overfit and hence fail to generalize
well.

Our primary focus will be controlling the estimation error. Controlling the estimation error
rather than the excess risk with respect to fBayes has various motivations, including

• If we are “lucky” and the approximation error is zero or sufficiently small, a bound on the
estimation error also provides a good bound on R(f̂)−R∗.

• Suppose that we are in a nonparametric setup where, at sample size n, Learner employs
hypothesis space Fn. Under mild assumptions about the true distribution, we may be able
to control the approximation error as a function of n. It then is also useful to control the
estimation error for each Fn, as we then can determine how quickly the complexity of the
model should increase with the sample size.

Oracle inequality approach. A bound on the estimation error of a learning algorithm A that
outputs hypothesis f̂ is equivalent to a bound of the form:

R(f̂) ≤ R(f∗) + bound(F , n). (2)

In statistics and machine learning, a bound of this form is called an oracle inequality. The name
stems from our comparing the performance of f̂ to that of an omniscient oracle which plays f∗, the
best hypothesis in F .

It is natural to seek an oracle inequality for a learning algorithm, as we then know how far off
the risk we obtain is from the best possible risk obtainable via F . However, to the practitioner,
oracle inequalities are not immediately useful: R(f∗) is an unknown quantity, so, while the bound
may be correct, a practitioner has no observable upper bound on R(f̂) (!).

Deviations approach: Decomposition of risk into empirical risk and deviation

The error decomposition below, this time of the risk of R(f̂) itself, can lead to an observable
bound. For any hypothesis f and training sample S = ((X1, Y1), . . . , (Xn, Yn)), let R̂S(f) =
1
n

∑n
j=1 1[f(Xj) 6= Yj ] denote the empirical risk of f on S. Then

R(f̂) = R̂S(f̂) +
(
R(f̂)− R̂S(f̂)

)︸ ︷︷ ︸
deviation

. (3)

Let’s see how we can use (3) to get an upper bound on the risk of f̂ . Suppose that we have a
bound of the form: ∣∣∣R(f)− R̂S(f)

∣∣∣ ≤ ε for all f ∈ F . (4)
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This bound is known as a uniform deviation bound, since it bounds the deviation of R̂S(f) from
its mean E[R̂S(f)] = R(f), uniformly over F .

From (4), the bound holds for f̂ in particular, and so we immediately obtain the risk bound

R(f̂) ≤ R̂S(f̂) + ε. (5)

Note that this upper bound is observable, since the empirical risk of f̂ can be observed.
Moreover, as we will see below, a bound of the form (4) can, with just a few short steps, lead

to an oracle inequality.

2 A first excess risk bound for finite classes
Let’s derive a first excess risk bound for agnostically learning a finite class F . We will obtain a
bound by way of a concentration inequality known as Hoeffding’s inequality, proved by Wassily
Hoeffding in 1963.

Theorem 1. Let Z1, . . . , Zn be independent random variables such that Zj ∈ [aj , bj ] for j ∈ [n].
Let Z̄ = 1

n

∑n
j=1 Zj. Then for any ε > 0:

Pr
(
Z̄ − E[Z̄] ≥ ε

)
≤ exp

(
−2n2ε2∑n

j=1(bj − aj)2

)
.

Before establishing an excess risk bound, we will first establish a uniform convergence result:
the empirical risk converges to the actual risk uniformly over F . It becomes tiresome to carry
around the subscript S for the empirical risk, so we use the abbreviation R̂(f) := R̂S(f).

Theorem 2. Let F be a finite set of hypotheses and let P be a fixed distribution over X ×Y. For
any ε > 0 and any δ ∈ (0, 1), if (X1, Y1), . . . , (Xn, Yn) are drawn i.i.d. from P with

n ≥
log |F|+ log 2

δ

2ε2 ,

then with probability at least 1− δ∣∣∣R(f)− R̂(f)
∣∣∣ ≤ ε for all f ∈ F .

Proof. Fix some f ∈ F and consider the probability that

R(f)− R̂(f) > ε.

This event may be rewritten as

1
n

n∑
j=1

1[f(Xj) 6= Yj ]−E

 1
n

n∑
j=1

1[f(Xj) 6= Yj ]

 > ε,

and so we may apply Hoeffding’s inequality twice, once with Zj = −1[f(Xj) 6= Yj ], aj = 0, and
bj = 1 for j ∈ [n], yielding

Pr
(
R(f)− R̂(f) > ε

)
≤ e−2nε2

,
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and once with Zj = 1[f(Xj) 6= Yj ], aj = −1, and bj = 0 for j ∈ [n], yielding

Pr
(
R̂(f)−R(f) > ε

)
≤ e−2nε2

.

Hence,

Pr
(∣∣∣R(f)− R̂(f)

∣∣∣ > ε
)
≤ 2e−2nε2

.

Next, applying the union bound, we have

Pr
(
∃f ∈ F :

∣∣∣R(f)− R̂(f)
∣∣∣ > ε

)
≤
∑
f∈F

Pr
(∣∣∣R(f)− R̂(f)

∣∣∣ > ε
)

≤ 2|F|e−2nε2
.

The result follows by setting the RHS to δ and solving for n.

We now prove that any finite class can be agnostically learned using empirical risk minimization
(ERM) over F , a method which outputs the hypothesis in F that minimizes the empirical risk.

Theorem 3. Let F be a finite set of hypotheses, let P be a fixed distribution over X × Y, and
take A to be ERM over F For any ε > 0 and any δ ∈ (0, 1), if A is run on a training sample
(X1, Y1), . . . , (Xn, Yn) drawn i.i.d. from P with

n ≥
2
(
log |F|+ log 2

δ

)
ε2 ,

then with probability at least 1− δ

R(f̂) ≤ R(f∗) + ε.

Proof. First, observe that

R(f̂)−R(f∗) =
(
R̂(f̂) + (R(f̂)− R̂(f̂))

)
−
(
R̂(f∗) + (R(f∗)− R̂(f∗))

)
=

(
R̂(f̂)− R̂(f∗)

)
+
(
R(f̂)− R̂(f̂)

)
+
(
R̂(f∗)−R(f∗)

)
≤

(
R(f̂)− R̂(f̂)

)
+
(
R̂(f∗)−R(f∗)

)
≤ 2 max

f∈F

∣∣∣R(f)− R̂(f)
∣∣∣ ,

where the first inequality uses the fact that the empirical risk of ERM is no greater than the
empirical risk of f∗. Next, from Theorem 2, with probability at least 1− δ

max
f∈F

∣∣∣R(f̂)− R̂(f̂)
∣∣∣ ≤ ε/2,

and so the result holds.
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3 Effective size of a class
So far, we have seen how to obtain a uniform convergence result when F is finite. We will now
“upgrade” this result to the case when F is infinite. It is worth thinking about whether our previous
proof might already yield a useful bound for infinite F . Unfortunately, the answer is no because
the union bound for infinite F leads to an infinite upper bound. As it turns out, the right way to
derive a good uniform convergence bound still relies on a union bound, but applied in a very clever
way. For this, we need the notion of the “effective size” of F .

A key idea we will use is that even though F may be infinite, there are only finitely many
ways to classify a given training sample by picking different hypotheses from F . Let’s make this
concrete. Given a sequence of inputs xn1 = (x1, . . . , xn), let F|xn

1
be the coordinate projection of F

onto xn1 . That is,

Fxn
1

:=




f(x1)
f(x2)

...
f(xn)

 : f ∈ F

 .

Since F is a set of classifiers, each of which takes values in {0, 1}, we have that Fxn
1
⊂ {0, 1}n, and

hence |Fxn
1
| ≤ 2n.

Intuitively, even though our hypothesis space F is infinite, when it is viewed through the lens
of the data, there are only finitely many distinct hypotheses.

Example 1 (Threshold functions). Consider learning threshold functions over R, so that X = R
and F = {ft : t ∈ R}, where ft(x) = 1[x ≥ t]. Suppose that we have n distinct inputs x1 < x2 <
. . . < xn. Then it is easy to see that there only n+ 1 distinct ways that F can classify this training
sample, namely:

t ∈ (−∞, x1) t ∈ (x1, x2) t ∈ (x2, x3) · · · t ∈ (xn−1, xn) t ∈ (xn,∞).

Thus, in this case, |F|xn
1
| = n+ 1, and for any training sample of size n, |F|xn

1
| ≤ n+ 1.

4 Growth function
Definition 3. The growth function of F is defined as

ΠF (n) = sup
(x1,...,xn)∈Xn

|F|xn
1
|.

The growth function of F evaluated at n is the maximum number of ways a set of n points can be
split using functions from F . Often in the literature, you may also see ΠF (n) called the n th shatter
coefficient of F . The latter term stems from the notion of “shattering”, a crucial component in
defining the fundamental notion of Vapnik-Chervonenkis dimension (VC dimension); we will study
both shattering and VC dimension next week.

Example 2 (Intervals). Consider the class of intervals over R. We thus have X = R and F =
{fa,b : −∞ ≤ a ≤ b ≤ ∞} for fa,b(x) = 1[a ≤ x ≤ b]. Similar to the case of threshold functions
over R, in this case ΠF (n) is finite. We leave it as exercise to work out the exact value of ΠF (n).
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5 Uniform convergence for infinite classes
We now prove the following fundamental result, originally proved by Vapnik and Chervonenkis in
1971. The result is a uniform convergence result over infinite classes, where the complexity of the
class is paid for via the growth function ΠF (n).

Before presenting the result, we establish some useful notation that appears frequently in the
empirical process theory literature. For any function g from X ×Y to R, let P g denote the expec-
tation of g(Z) for Z = (X,Y ) ∼ P . For a training sample Z1, . . . , Zn, the empirical distribution
Pn (with respect to Z1, . . . , Zn) is 1

n

∑n
j=1 δZj (·). Let Pn g denote the expectation of g(Z) when Z

is drawn from the empirical distribution Pn . We thus have

P g = EZ∼P [g(Z)] Pn g = 1
n

n∑
j=1

g(Zj).

For any hypothesis f ∈ F , define the loss-composed version of f as gf : (x, y) 7→ 1[f(x) 6= y].
So, while f is a random variable mapping from X to {0, 1}, the function gf is a random variable
mapping from X × Y to {0, 1}. From F we can generate the corresponding “loss-composed” class
G = {gf : f ∈ F}. Throughout this section, we will use the notation Z = (X,Y ) and Zj = (Xj , Yj).

Theorem 4 (Vapnik and Chervonenkis, 1971). For any probability distribution P and any hypoth-
esis space F ⊂ {0, 1}X , and any ε > 0,

Pr
(

sup
g∈G
|(P − Pn )g| > ε

)
≤ 8ΠF (n)e−nε2/32.

The proof of this result uses two key ideas, both of which are variants of a powerful argument
known as symmetrization.

The first symmetrization is sometimes called “symmetrization by ghost sample”. The idea is to
shift from bounding the uniform deviation of an empirical expectation from the actual expectation
to bounding the uniform deviation between two empirical expectations from independent samples
of the same size. To this end, let Z ′1, . . . , Z ′n be an independent copy of Z1, . . . , Zn, so that all 2n
random variables are i.i.d. according to P . We call Z ′1, . . . , Z ′n a ghost sample, because this is a
fictional sample that we do not actually have, but which, nevertheless, we will use in our analysis.
Now, similar to Pn , let P ′n g denote the empirical expectation of a function g : X × Y → R with
respect to the ghost sample, so that

P ′n g = 1
n

n∑
j=1

g(Z ′j).

With this notation in place, we establish the first symmetrization lemma.

Lemma 1. Let Z1, . . . , Zn, Z
′
1, . . . , Z

′
n be i.i.d. random variables distributed according to P . Then

for any ε satisfying nε2 ≥ 2,

Pr
(

sup
g∈G
|(P − Pn )g| > ε

)
≤ 2 Pr

(
sup
g∈G

∣∣(P ′n − Pn )g
∣∣ > ε/2

)

Intuitively, the reason why we view this lemma as progress is because we now only care about
viewing the function class G through the lens of a double sample (the original sample and the ghost
sample). Thus, it is conceivable that we may be able to use the finiteness of ΠF (2n) if we are clever
enough.
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Proof. The proof involves a sequence of lower bounds on the probability in the RHS of the lemma.
Let gn be a function in G for which |(P − Pn )gn| = supg∈G |(P − Pn )g| (if there is no such gn,

minor but tedious modifications allow essentially the same proof to go through). Then

Pr
(

sup
g∈G

∣∣(Pn − P ′n )g
∣∣ > ε/2

)
≥ Pr

(∣∣(Pn − P ′n )gn
∣∣ > ε/2

)
. (6)

Next, observe that
[
|(P −Pn )gn| > ε

]
and

[
|(P −P ′n )gn| < ε

2
]
together imply

[
|(P ′n −Pn )gn| > ε

2
]
.

Hence, the above is at least

Pr
((
|(P − Pn )gn| > ε

)∧(
|(P − P ′n )gn| < ε/2

))
= E

[
1[|(P − Pn )gn| > ε] ·Pr

(
|(P − P ′n )gn| < ε/2 | Z1, . . . , Zn

)]
(7)

Now, since gn depends only on Z1, . . . , Zn, we can lower bound the conditional probability above
using Chebyshev’s inequality:

PrZ′
1,...,Z

′
n

(
(P − P ′n )gn ≥ ε/2

)
≤ Var[gn(Z ′1) | Z1, . . . , Zn]

nε2/4

≤ 1
nε2 ,

where we used the fact that the variance of a Bernoulli random variable can be at most 1/4. Since
we assumed that nε2 ≥ 2, it follows that

Pr
(
|(P − P ′n )gn| < ε/2 | Z1, . . . , Zn

)
≥ 1

2 .

But this implies that (7) (and hence the LHS of (6)) is lower bounded by

1
2 Pr (|(P − Pn )gn| > ε) .

The second key idea is another application of symmetrization, this time an argument often
called “symmetrization by random signs”. For this argument, we employ a sequence of independent
Rademacher random variables σ1, . . . , σn. A Rademacher random variable σ is one which takes the
values {−1,+1} with equal probability, so Pr(σ = −1) = Pr(σ = 1) = 1

2 .

Lemma 2. Let Z1, . . . , Zn, Z
′
1, . . . , Z

′
n be i.i.d. random variables and let σ1, . . . , σn be independent

Rademacher random variables. Then for any ε > 0,

Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

(
g(Z ′j)− g(Zj)

)∣∣∣∣∣∣ > ε/2

 ≤ 2 Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

σjg(Zj)

∣∣∣∣∣∣ > ε/4


Proof. Observe that for any choice of sign variables σ1, . . . , σn ∈ {−1,+1}, the distribution of

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

(
g(Z ′j)− g(Zj)

)∣∣∣∣∣∣
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is identical to the distribution of

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

σj
(
g(Z ′j)− g(Zj)

)∣∣∣∣∣∣ .
Therefore, letting σ1, . . . , σn be i.i.d. Rademacher random variables, it holds that

Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

(
g(Z ′j)− g(Zj)

)∣∣∣∣∣∣ > ε/2


= Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

σj
(
g(Z ′j)− g(Zj)

)∣∣∣∣∣∣ > ε/2


≤ Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

σjg(Z ′j)

∣∣∣∣∣∣ > ε/4

+ Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

σjg(Zj)

∣∣∣∣∣∣ > ε/4


= 2 Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

σjg(Zj)

∣∣∣∣∣∣ > ε/4



Proof (of Theorem 4). Lemmas 1 and 2 together imply that for nε2 ≥ 2,

Pr
(

sup
g∈G
|(P − Pn )g| > ε

)
≤ 4 Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

σjg(Zj)

∣∣∣∣∣∣ > ε/4

 .
Next, observe that

Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑
j=1

σjg(Zj)

∣∣∣∣∣∣ > ε/4 | Z1, . . . , Zn


= Pr

sup
f∈F

∣∣∣∣∣∣ 1n
n∑
j=1

σjgf (Zj)

∣∣∣∣∣∣ > ε/4 | Z1, . . . , Zn


= Pr

 max
v∈F|xn

1

∣∣∣∣∣∣ 1n
n∑
j=1

σj 1[vj 6= Yj ]

∣∣∣∣∣∣ > ε/4 | Z1, . . . , Zn


≤ ΠF (n) max

v∈F|xn
1

Pr

∣∣∣∣∣∣ 1n
n∑
j=1

σj 1[vj 6= Yj ]

∣∣∣∣∣∣ > ε/4 | Z1, . . . , Zn

 .
Finally, note that conditional on (Z1, . . . , Zn), each random variable σj 1[vj 6= Yj ] is a zero-mean
random variable taking values in [−1, 1]. Applying Hoeffding’s inequality with [aj , bj ] = [−1, 1] for
j ∈ [n], the above probability is at most

2ΠF (n)e−nε2/32.

The final bound follows, even without the condition nε2 ≥ 2, since 8e−nε2/32 > 1 for nε2 < 2.
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