Machine Learning Theory (CSC 482A/581B) - Lecture 9

Nishant Mehta

1 Recap of risk bounds for VC classes

Let’s begin by recasting the risk bounds we established in the last few lectures in a minimax
framework. In the bound below, the outer infimum serves as the “min” player and the supremum
serves as the “max” player. Let F be a class for which VCdim(F) = V.

In the agnostic learning setting, we have

A 32 (Vlog § +log } )
infsup Pr | R(f) — inf R(f) >
infsup Pr (f) = inf R(f) -

where
e the probability is with respect to the training sample (X1, Y1),...,(Xp, Yn) id P;

e the infimum is over all learning methods that output a hypothesis f € F that depends on the
training sample;

e the supremum is over all probability distributions over X x ).

On the other hand, in the realizable case (i.e. PAC learning), we have

. Q(Vlogz%"—i-log %)
inf sup Pr | R(f) > <4, (1)
f PePr n
where the probability and infimum are as before, but now the supremum is restricted to Pr, the
set of all distributions P over X’ x ) for which the label Y = ¢(X) for some ¢ € F.

Each of the above bounds was established by showing that a particular learning method, empir-
ical risk minimization, obtains low risk with high probability no matter the distribution generating
the data.! Thus, if F has finite dimension, a problem is “learnable” in that, no matter the distri-
bution, the gap between the error our learning method achieves and the best possible error using
F converges to zero as the sample size increases. One might then ask if there is a converse:

Is it necessary for the VC dimension to be finite in order for a problem to be learnable?

As we will see today, the answer is yes. The VC dimension thus characterizes the classes F for
which learnability holds.

1nterestingly, the “min” player could perform well even though it was straightjacketed (so to speak) by being
forced to be a proper learner (which restricts f to lie in F); we could have entertained e.g. allowing predictions
according to weighted majority votes over F, but the above bounds hold without broadening the infimum to this
larger class.



2 A minimax lower bound for the realizable case

Ignoring logarithmic factors, the upper bound (1) is essentially unimprovable. In all the bounds
below, the learning method f can be any learning method, not necessarily one restricted to taking
values in the set F.

Theorem 1. Let F satisfy VCAim(F) =V + 1. Then in the realizable case, for n > 15,
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inf Pr{ R(f) > > .
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We will not prove the above result (for a proof, see Theorem 14.2 of the book of Devroye,
Gyorfi, and Lugosi (1996)). Instead, we’ll prove a related lower bound on the expected risk, where
the expectation is over the training sample:

Theorem 2. Let F be a class for which VCdim(F) =V + 1. Then for anyn >V,

ir}fs;l)pE {R(f)} > 2L (1 — 1) .

en n
Note that the choice V 4 1 (instead of V') is to slightly simply the proof.

Proof. We begin by constructing a special family of probability distributions. Observe that since
VCdim(F) = V + 1, there exists a set of points {xg,x1,...,2y} that is shattered by F. Let
Py = {Py:b€{0,1}V} be a family of 2" probability distributions. Let € > 0 be some constant to
be determined later. We take all the probability distributions to have the same marginal distribution
over X which is supported on {xg, z1, ..., zv}. Under this distribution, Pr(X = z;) = ¢ for j € [V],
and Pr(X = zg) = 1 — Ve. Under distribution Py, let Y = f;,(X), with f, defined as

e

The idea behind this construction is to let one of these 2V distributions be the one that generates
the data. Learner will then need to identify the correct b € {0,1}V in order to perform well; for
every bit b; that Learner misses, it pays additional risk €. However, most of the probability mass
is on the “garbage” point xg, which reveals no information about b. Only samples falling in the
set {z1,...,xy} reveal information about which distribution is correct, and this set has probability
only Ve. Now, onwards with the proof.

Let Z" = ((X1,Y1),...,(X,,Yy)), and let fzn be an arbitrary classifier (that depends on Z7).
The first step is to lower bound the supremum over b by the expectation over a random variable B
distributed uniformly over {0,1}V:
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It will be useful to rewrite the RHS in terms of a conditional probability, as we then can leverage
properties of the Bayes risk of a decision problem:

Ep

Ezn [R(fzn)}

— E[E[1[f2 () £ fax)] | 2, x|
= [P (72000 # 1500 | 27, ) . (2)



Next, we analyze the conditional probability inside the expectation:

Pr (fzn(X) # f5(X) | 2", X)
=1[fzn(X) = 0] - Pr(fp(X) =1] 2", X
+1[fzn(X) = 1] - Pr(fp(X) = 0] 2", X)
> min{Pr (fp(X)=1]2",X),1-Pr(fp(X)=1]| 2", X))}
= min{n(2", X),1-n(2", X)}, (3)

where n(Z", X) = Pr(fp(X)=1| 2" X)). From the last line above, we can see that we have
arrived at a quantity that is completely analogous to the (conditional) Bayes risk, where the con-
ditioning is on X (as usual) but now also Z".

It remains to lower bound the expectation of (3); let’s first get a handle on n(Z", X). Suppose
that X € {Xy,..., X, x0}; then the label of X is known and hence n(Z™, X) is equal to either 0
or 1. On the other hand, if X ¢ {X;,...,X,, 20}, then, among the distributions in Py that are
consistent with the labeling of Xy, ..., X,,, precisely half label X as 1 and half label X as 0, so in
this case we have 1(Z", X) = 1. It therefore follows that (3) is equal to

1
5 1 [X ¢ {Xl, cee ,Xn,$0}],
and hence (2) is equal to
1
S PrX ¢ {Xp,.... X, 20}).

Considering the V possible values of X (as xg is excluded in the above event), this probability is
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QZPr(X HPrX #xj) = Zel—s 28(1—8).
j=1 24

Next, setting ¢ = % yields

n—1
The result follows since (1 — l) > % To see this, note that this inequality is equivalent to

n
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and the claim follows from =3 =1+ ﬁ and the inequality e* > 1 + z. O



3 Lower bound, agnostic setting

A similar lower bound can be worked out in the agnostic case.

Theorem 3. There are constants ci,co > 0 such that, for any F satisfying VCdim(F) =V, for
any learning method f, there exists a distribution P over X x Y for which

r (R(f) — R(f*) > 01\/2) > .

4 Lower bounds on the expected risk actually tell you a lot of
about the achievable high probability upper bounds on the risk

Suppose someone approaches you on the street and says that they have a learning algorithm for
which, under any distribution P € Px (i.e. the realizable case), satisfies for some A,c > 0

Pr (R(f) > 6) < Aem e, (4)

Should you believe them? Well, if their claim is true, then, for any v > 0,
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logA yields the upper bound

Taking v =

logA 1
By

cn cn

E[R(f)] <
In light of Theorem 2, it must be the case that
logA 1 % < 1)

>— 1——
cn 2en n

AZexp(;V<1—l>—1>.
e n

Thus, unavoidably, A must depend on the VC dimension in a bound of the form (4). That is
to say, if the street person did not choose A to be exponential large in V', then they must be lying!

and so
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