Machine Learning Theory (CSC 482A/581B) - Lecture 9

Nishant Mehta

1 Recap of risk bounds for VC classes

Let's begin by recasting the risk bounds we established in the last few lectures in a minimax framework. In the bound below, the outer infimum serves as the "min" player and the supremum serves as the "max" player. Let \mathcal{F} be a class for which $VCdim(\mathcal{F}) = V$.

In the agnostic learning setting, we have

$$\inf_{\hat{f}} \sup_{P} \Pr\left(R(\hat{f}) - \inf_{f \in \mathcal{F}} R(f) > \sqrt{\frac{32\left(V \log \frac{en}{V} + \log \frac{8}{\delta}\right)}{n}}\right) \le \delta,$$

where

- the probability is with respect to the training sample $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P$;
- the infimum is over all learning methods that output a hypothesis $\hat{f} \in \mathcal{F}$ that depends on the training sample;
- the supremum is over all probability distributions over $\mathcal{X} \times \mathcal{Y}$.

On the other hand, in the realizable case (i.e. PAC learning), we have

$$\inf_{\hat{f}} \sup_{P \in \mathcal{P}_{\mathcal{F}}} \Pr\left(R(\hat{f}) > \frac{2\left(V \log \frac{2en}{V} + \log \frac{2}{\delta}\right)}{n}\right) \le \delta,\tag{1}$$

where the probability and infimum are as before, but now the supremum is restricted to $\mathcal{P}_{\mathcal{F}}$, the set of all distributions P over $\mathcal{X} \times \mathcal{Y}$ for which the label Y = c(X) for some $c \in \mathcal{F}$.

Each of the above bounds was established by showing that a particular learning method, empirical risk minimization, obtains low risk with high probability no matter the distribution generating the data.¹ Thus, if \mathcal{F} has finite dimension, a problem is "learnable" in that, no matter the distribution, the gap between the error our learning method achieves and the best possible error using \mathcal{F} converges to zero as the sample size increases. One might then ask if there is a converse:

Is it *necessary* for the VC dimension to be finite in order for a problem to be learnable?

As we will see today, the answer is yes. The VC dimension thus *characterizes* the classes \mathcal{F} for which learnability holds.

¹Interestingly, the "min" player could perform well even though it was straightjacketed (so to speak) by being forced to be a proper learner (which restricts \hat{f} to lie in \mathcal{F}); we could have entertained e.g. allowing predictions according to weighted majority votes over \mathcal{F} , but the above bounds hold without broadening the infimum to this larger class.

2 A minimax lower bound for the realizable case

Ignoring logarithmic factors, the upper bound (1) is essentially unimprovable. In all the bounds below, the learning method \hat{f} can be *any* learning method, not necessarily one restricted to taking values in the set \mathcal{F} .

Theorem 1. Let \mathcal{F} satisfy $\operatorname{VCdim}(\mathcal{F}) = V + 1$. Then in the realizable case, for $n \ge 15$,

$$\inf_{\hat{f}} \sup_{P \in \mathcal{P}_{\mathcal{F}}} \Pr\left(R(\hat{f}) \ge \frac{V-1}{12n}\right) \ge \frac{1}{10}.$$

We will not prove the above result (for a proof, see Theorem 14.2 of the book of Devroye, Györfi, and Lugosi (1996)). Instead, we'll prove a related lower bound on the *expected* risk, where the expectation is over the training sample:

Theorem 2. Let \mathcal{F} be a class for which $\operatorname{VCdim}(\mathcal{F}) = V + 1$. Then for any $n \geq V$,

$$\inf_{\hat{f}} \sup_{P} \mathsf{E}\left[R(\hat{f})\right] \geq \frac{V}{2en} \left(1 - \frac{1}{n}\right).$$

Note that the choice V + 1 (instead of V) is to slightly simply the proof.

Proof. We begin by constructing a special family of probability distributions. Observe that since $VCdim(\mathcal{F}) = V + 1$, there exists a set of points $\{x_0, x_1, \ldots, x_V\}$ that is shattered by \mathcal{F} . Let $\mathcal{P}_V = \{P_b : b \in \{0, 1\}^V\}$ be a family of 2^V probability distributions. Let $\varepsilon > 0$ be some constant to be determined later. We take all the probability distributions to have the same marginal distribution over \mathcal{X} which is supported on $\{x_0, x_1, \ldots, x_V\}$. Under this distribution, $Pr(X = x_j) = \varepsilon$ for $j \in [V]$, and $Pr(X = x_0) = 1 - V\varepsilon$. Under distribution P_b , let $Y = f_b(X)$, with f_b defined as

$$f_b(X) = \begin{cases} b_j & \text{if } j \in [V], \\ 0 & \text{if } j = 0. \end{cases}$$

The idea behind this construction is to let one of these 2^V distributions be the one that generates the data. Learner will then need to identify the correct $b \in \{0, 1\}^V$ in order to perform well; for every bit b_j that Learner misses, it pays additional risk ε . However, most of the probability mass is on the "garbage" point x_0 , which reveals no information about b. Only samples falling in the set $\{x_1, \ldots, x_V\}$ reveal information about which distribution is correct, and this set has probability only $V\varepsilon$. Now, onwards with the proof.

Let $Z^n = ((X_1, Y_1), \ldots, (X_n, Y_n))$, and let \hat{f}_{Z^n} be an arbitrary classifier (that depends on Z^n). The first step is to lower bound the supremum over b by the expectation over a random variable B distributed uniformly over $\{0, 1\}^V$:

$$\sup_{b \in \{0,1\}^V} \mathsf{E}_{Z^n} \left[R(\hat{f}_{Z^n}) \right] \ge \mathsf{E}_B \left[\mathsf{E}_{Z^n} \left[R(\hat{f}_{Z^n}) \right] \right].$$

It will be useful to rewrite the RHS in terms of a conditional probability, as we then can leverage properties of the Bayes risk of a decision problem:

$$\mathsf{E}_{B}\left[\mathsf{E}_{Z^{n}}\left[R(\hat{f}_{Z^{n}})\right]\right] = \mathsf{E}\left[\mathsf{E}\left[\mathbf{1}\left[\hat{f}_{Z^{n}}(X) \neq f_{B}(X)\right] \mid Z^{n}, X\right]\right]$$
$$= \mathsf{E}\left[\Pr\left(\hat{f}_{Z^{n}}(X) \neq f_{B}(X) \mid Z^{n}, X\right)\right].$$
(2)

Next, we analyze the conditional probability inside the expectation:

$$\Pr\left(\hat{f}_{Z^{n}}(X) \neq f_{B}(X) \mid Z^{n}, X\right)$$

= $\mathbf{1}\left[\hat{f}_{Z^{n}}(X) = 0\right] \cdot \Pr\left(f_{B}(X) = 1 \mid Z^{n}, X\right)$
+ $\mathbf{1}\left[\hat{f}_{Z^{n}}(X) = 1\right] \cdot \Pr\left(f_{B}(X) = 0 \mid Z^{n}, X\right)$
 $\geq \min\{\Pr\left(f_{B}(X) = 1 \mid Z^{n}, X\right), 1 - \Pr\left(f_{B}(X) = 1 \mid Z^{n}, X\right)\}$
= $\min\{\eta(Z^{n}, X), 1 - \eta(Z^{n}, X)\},$ (3)

where $\eta(Z^n, X) = \Pr(f_B(X) = 1 | Z^n, X))$. From the last line above, we can see that we have arrived at a quantity that is completely analogous to the (conditional) Bayes risk, where the conditioning is on X (as usual) but now also Z^n .

It remains to lower bound the expectation of (3); let's first get a handle on $\eta(Z^n, X)$. Suppose that $X \in \{X_1, \ldots, X_n, x_0\}$; then the label of X is known and hence $\eta(Z^n, X)$ is equal to either 0 or 1. On the other hand, if $X \notin \{X_1, \ldots, X_n, x_0\}$, then, among the distributions in \mathcal{P}_V that are consistent with the labeling of X_1, \ldots, X_n , precisely half label X as 1 and half label X as 0, so in this case we have $\eta(Z^n, X) = \frac{1}{2}$. It therefore follows that (3) is equal to

$$\frac{1}{2} \mathbf{1} [X \notin \{X_1, \dots, X_n, x_0\}],$$

and hence (2) is equal to

$$\frac{1}{2} \Pr\left(X \notin \{X_1, \dots, X_n, x_0\}\right).$$

Considering the V possible values of X (as x_0 is excluded in the above event), this probability is

$$\frac{1}{2}\sum_{j=1}^{V}\Pr(X=x_j)\prod_{i=1}^{n}\Pr(X_i\neq x_j) = \frac{1}{2}\sum_{j=1}^{V}\varepsilon(1-\varepsilon)^n = \frac{V}{2}\varepsilon(1-\varepsilon)^n.$$

Next, setting $\varepsilon = \frac{1}{n}$ yields

$$\frac{V}{2n}\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n}\right)^{n-1}.$$

The result follows since $\left(1-\frac{1}{n}\right)^{n-1} \ge \frac{1}{e}$. To see this, note that this inequality is equivalent to

$$(n-1)\log\left(1-\frac{1}{n}\right) \ge -1 \quad \Longleftrightarrow \quad \frac{1}{n-1} \ge \log\left(\frac{n}{n-1}\right) \quad \Longleftrightarrow \quad e^{\frac{1}{n-1}} \ge \frac{n}{n-1},$$

and the claim follows from $\frac{n}{n-1} = 1 + \frac{1}{n-1}$ and the inequality $e^x \ge 1 + x$.

3 Lower bound, agnostic setting

A similar lower bound can be worked out in the agnostic case.

Theorem 3. There are constants $c_1, c_2 > 0$ such that, for any \mathcal{F} satisfying $\operatorname{VCdim}(\mathcal{F}) = V$, for any learning method \hat{f} , there exists a distribution P over $\mathcal{X} \times \mathcal{Y}$ for which

$$\Pr\left(R(\hat{f}) - R(f^*) > c_1 \sqrt{\frac{V}{n}}\right) > c_2.$$

4 Lower bounds on the expected risk actually tell you a lot of about the achievable high probability upper bounds on the risk

Suppose someone approaches you on the street and says that they have a learning algorithm for which, under any distribution $P \in \mathcal{P}_{\mathcal{F}}$ (i.e. the realizable case), satisfies for some A, c > 0

$$\Pr\left(R(\hat{f}) > \varepsilon\right) \le A e^{-cn\varepsilon}.$$
(4)

Should you believe them? Well, if their claim is true, then, for any $\gamma \ge 0$,

$$\begin{split} \mathsf{E}[R(\hat{f})] &= \int_{0}^{1} \Pr(R(\hat{f}) > \varepsilon) d\varepsilon \\ &\leq \gamma + \int_{\gamma}^{1} \Pr(R(\hat{f}) > \varepsilon) d\varepsilon \\ &\leq \gamma + A \int_{\gamma}^{1} e^{-cn\varepsilon} d\varepsilon \\ &= \gamma + \frac{A}{cn} \left(e^{-cn\gamma} - e^{-n} \right) \\ &\leq \gamma + \frac{A}{cn} e^{-cn\gamma}. \end{split}$$

Taking $\gamma = \frac{\log A}{cn}$ yields the upper bound

$$\mathsf{E}[R(\hat{f})] \le \frac{\log A}{cn} + \frac{1}{cn}.$$

In light of Theorem 2, it must be the case that

$$\frac{\log A}{cn} + \frac{1}{cn} \ge \frac{V}{2en} \left(1 - \frac{1}{n}\right),$$

and so

$$A \ge \exp\left(\frac{cV}{2e}\left(1-\frac{1}{n}\right)-1\right).$$

Thus, unavoidably, A must depend on the VC dimension in a bound of the form (4). That is to say, if the street person did not choose A to be exponential large in V, then they must be lying!

References

Luc Devroye, László Györfi, and Gabor Lugosi. A Probabilistic Theory of Pattern Recognition, volume 31. Springer Science & Business Media, 1996.