
Machine Learning Theory (CSC 482A/581B) - Lecture 9

Nishant Mehta

1 Recap of risk bounds for VC classes
Let’s begin by recasting the risk bounds we established in the last few lectures in a minimax
framework. In the bound below, the outer infimum serves as the “min” player and the supremum
serves as the “max” player. Let F be a class for which VCdim(F) = V .

In the agnostic learning setting, we have

inf̂
f

sup
P

Pr

R(f̂)− inf
f∈F

R(f) >

√√√√32
(
V log en

V + log 8
δ

)
n

 ≤ δ,
where

• the probability is with respect to the training sample (X1, Y1), . . . , (Xn, Yn) iid∼ P ;

• the infimum is over all learning methods that output a hypothesis f̂ ∈ F that depends on the
training sample;

• the supremum is over all probability distributions over X × Y.

On the other hand, in the realizable case (i.e. PAC learning), we have

inf̂
f

sup
P∈PF

Pr

R(f̂) >
2
(
V log 2en

V + log 2
δ

)
n

 ≤ δ, (1)

where the probability and infimum are as before, but now the supremum is restricted to PF , the
set of all distributions P over X × Y for which the label Y = c(X) for some c ∈ F .

Each of the above bounds was established by showing that a particular learning method, empir-
ical risk minimization, obtains low risk with high probability no matter the distribution generating
the data.1 Thus, if F has finite dimension, a problem is “learnable” in that, no matter the distri-
bution, the gap between the error our learning method achieves and the best possible error using
F converges to zero as the sample size increases. One might then ask if there is a converse:

Is it necessary for the VC dimension to be finite in order for a problem to be learnable?

As we will see today, the answer is yes. The VC dimension thus characterizes the classes F for
which learnability holds.

1Interestingly, the “min” player could perform well even though it was straightjacketed (so to speak) by being
forced to be a proper learner (which restricts f̂ to lie in F); we could have entertained e.g. allowing predictions
according to weighted majority votes over F , but the above bounds hold without broadening the infimum to this
larger class.
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2 A minimax lower bound for the realizable case
Ignoring logarithmic factors, the upper bound (1) is essentially unimprovable. In all the bounds
below, the learning method f̂ can be any learning method, not necessarily one restricted to taking
values in the set F .

Theorem 1. Let F satisfy VCdim(F) = V + 1. Then in the realizable case, for n ≥ 15,

inf̂
f

sup
P∈PF

Pr
(
R(f̂) ≥ V − 1

12n

)
≥ 1

10 .

We will not prove the above result (for a proof, see Theorem 14.2 of the book of Devroye,
Györfi, and Lugosi (1996)). Instead, we’ll prove a related lower bound on the expected risk, where
the expectation is over the training sample:

Theorem 2. Let F be a class for which VCdim(F) = V + 1. Then for any n ≥ V ,

inf̂
f

sup
P

E
[
R(f̂)

]
≥ V

2en

(
1− 1

n

)
.

Note that the choice V + 1 (instead of V ) is to slightly simply the proof.

Proof. We begin by constructing a special family of probability distributions. Observe that since
VCdim(F) = V + 1, there exists a set of points {x0, x1, . . . , xV } that is shattered by F . Let
PV = {Pb : b ∈ {0, 1}V } be a family of 2V probability distributions. Let ε > 0 be some constant to
be determined later. We take all the probability distributions to have the same marginal distribution
over X which is supported on {x0, x1, . . . , xV }. Under this distribution, Pr(X = xj) = ε for j ∈ [V ],
and Pr(X = x0) = 1− V ε. Under distribution Pb, let Y = fb(X), with fb defined as

fb(X) =
{
bj if j ∈ [V ],
0 if j = 0.

The idea behind this construction is to let one of these 2V distributions be the one that generates
the data. Learner will then need to identify the correct b ∈ {0, 1}V in order to perform well; for
every bit bj that Learner misses, it pays additional risk ε. However, most of the probability mass
is on the “garbage” point x0, which reveals no information about b. Only samples falling in the
set {x1, . . . , xV } reveal information about which distribution is correct, and this set has probability
only V ε. Now, onwards with the proof.

Let Zn = ((X1, Y1), . . . , (Xn, Yn)), and let f̂Zn be an arbitrary classifier (that depends on Zn).
The first step is to lower bound the supremum over b by the expectation over a random variable B
distributed uniformly over {0, 1}V :

sup
b∈{0,1}V

EZn

[
R(f̂Zn)

]
≥ EB

[
EZn

[
R(f̂Zn)

]]
.

It will be useful to rewrite the RHS in terms of a conditional probability, as we then can leverage
properties of the Bayes risk of a decision problem:

EB
[
EZn

[
R(f̂Zn)

]]
= E

[
E
[
1
[
f̂Zn(X) 6= fB(X)

] ∣∣∣ Zn, X]]
= E

[
Pr
(
f̂Zn(X) 6= fB(X)

∣∣∣ Zn, X)]. (2)
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Next, we analyze the conditional probability inside the expectation:

Pr
(
f̂Zn(X) 6= fB(X) | Zn, X

)
= 1

[
f̂Zn(X) = 0

]
·Pr (fB(X) = 1 | Zn, X)

+ 1
[
f̂Zn(X) = 1

]
·Pr (fB(X) = 0 | Zn, X)

≥ min
{
Pr (fB(X) = 1 | Zn, X) , 1− Pr (fB(X) = 1 | Zn, X)

}
= min

{
η(Zn, X), 1− η(Zn, X)

}
, (3)

where η(Zn, X) = Pr (fB(X) = 1 | Zn, X)). From the last line above, we can see that we have
arrived at a quantity that is completely analogous to the (conditional) Bayes risk, where the con-
ditioning is on X (as usual) but now also Zn.

It remains to lower bound the expectation of (3); let’s first get a handle on η(Zn, X). Suppose
that X ∈ {X1, . . . , Xn, x0}; then the label of X is known and hence η(Zn, X) is equal to either 0
or 1. On the other hand, if X /∈ {X1, . . . , Xn, x0}, then, among the distributions in PV that are
consistent with the labeling of X1, . . . , Xn, precisely half label X as 1 and half label X as 0, so in
this case we have η(Zn, X) = 1

2 . It therefore follows that (3) is equal to

1
2 1 [X /∈ {X1, . . . , Xn, x0}],

and hence (2) is equal to

1
2 Pr (X /∈ {X1, . . . , Xn, x0}) .

Considering the V possible values of X (as x0 is excluded in the above event), this probability is

1
2

V∑
j=1

Pr(X = xj)
n∏
i=1

Pr(Xi 6= xj) = 1
2

V∑
j=1

ε(1− ε)n = V

2 ε(1− ε)
n.

Next, setting ε = 1
n yields

V

2n

(
1− 1

n

)(
1− 1

n

)n−1
.

The result follows since
(
1− 1

n

)n−1
≥ 1

e . To see this, note that this inequality is equivalent to

(n− 1) log
(

1− 1
n

)
≥ −1 ⇐⇒ 1

n− 1 ≥ log
(

n

n− 1

)
⇐⇒ e

1
n−1 ≥ n

n− 1 ,

and the claim follows from n
n−1 = 1 + 1

n−1 and the inequality ex ≥ 1 + x.
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3 Lower bound, agnostic setting
A similar lower bound can be worked out in the agnostic case.

Theorem 3. There are constants c1, c2 > 0 such that, for any F satisfying VCdim(F) = V , for
any learning method f̂ , there exists a distribution P over X × Y for which

Pr

R(f̂)−R(f∗) > c1

√
V

n

 > c2.

4 Lower bounds on the expected risk actually tell you a lot of
about the achievable high probability upper bounds on the risk

Suppose someone approaches you on the street and says that they have a learning algorithm for
which, under any distribution P ∈ PF (i.e. the realizable case), satisfies for some A, c > 0

Pr
(
R(f̂) > ε

)
≤ Ae−cnε. (4)

Should you believe them? Well, if their claim is true, then, for any γ ≥ 0,

E[R(f̂)] =
∫ 1

0
Pr(R(f̂) > ε)dε

≤ γ +
∫ 1

γ
Pr(R(f̂) > ε)dε

≤ γ +A

∫ 1

γ
e−cnεdε

= γ + A

cn

(
e−cnγ − e−n

)
≤ γ + A

cn
e−cnγ .

Taking γ = logA
cn yields the upper bound

E[R(f̂)] ≤ logA
cn

+ 1
cn
.

In light of Theorem 2, it must be the case that
logA
cn

+ 1
cn
≥ V

2en

(
1− 1

n

)
,

and so

A ≥ exp
(
cV

2e

(
1− 1

n

)
− 1

)
.

Thus, unavoidably, A must depend on the VC dimension in a bound of the form (4). That is
to say, if the street person did not choose A to be exponential large in V , then they must be lying!
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