
Machine Learning Theory (CSC 482A/581B)

Problem Set 2 Due on Tuesday, February 26th, 7pm

Instructions:

• You must write up your solutions individually.

• You may have high-level discussions with 1 other student registered in the course. If you
discuss problems with another student, include at the top of your submission: their name,
V#, and the problems discussed.

• Your must type up your solutions and are encouraged to use LaTeX to do this. For any
problems where you only have a partial solution, be clear about any parts of your solution
for which you have low confidence.

• Please submit your solutions via conneX by the due date of Tuesday, February 26th, 7pm.
This is a hard deadline.

Questions:

1. Let X = R2 and take F to be the set of all convex polygons; the classifier corresponding to a
convex polygon labels as positive all points inside the polygon (including the boundary) and
labels all other points as negative. Prove that VCdim(F) =∞.

2. Let F be the class of linear separators in d dimensions, so that F =
{
fw,b : w ∈ Rd, b ∈ R

}
with fw,b(x) = 1 [〈w, x〉+ b ≥ 0].
(a) Prove that VCdim(F) ≥ d+ 1.
(b) Radon’s Theorem states that any set of d + 2 points in Rd can be partitioned into two

sets A and B such that the convex hulls of A and B intersect. Using Radon’s Theorem,
prove that VCdim(F) ≤ d+ 1 (and hence, combined with part (a), we may conclude that
VCdim(F) = d+ 1).

(c) Next, prove Radon’s Theorem. Any valid proof is allowed. Here is the start of one potential
proof. Recall from linear algebra that any d+ 1 points x1, . . . , xd+1 ∈ Rd must be linearly
dependent, i.e., there exists a vector λ ∈ Rd+1 not equal to the zero vector such that

d+1∑
j=1

λjxj = 0.

The hint is to first prove that any set of d + 2 points x1, . . . , xd+2 ∈ Rd must be affine
dependent, meaning that there exists a vector λ ∈ Rd+2 not equal to the zero vector such
that

d+2∑
j=1

λjxj = 0 and
d+2∑
j=1

λj = 0.
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3. Suppose that P is a probability distribution over Rd, and let the training sampleX1, . . . , Xn, Xn+1
be i.i.d. samples with distribution P . We say that (X1, . . . , Xn) is s-sparse if

‖Xj‖0 ≤ s for all j ∈ [n],

where, for any vector x, the `0 “norm” ‖x‖0 is defined as the number of non-zero components
in x.
Let ŝ be the minimum value of s ∈ {0, 1, . . . , d} such that (X1, . . . , Xn) is s-sparse.
(a) Derive an upper bound (which holds with high probability over X1, . . . , Xn) on the prob-

ability that Xn+1 is ŝ-sparse. Specifically, your bound should be of the form:

With probability at least 1− δ, Pr(‖Xn+1‖0 > ŝ) = O

(
log 1

δ
n

)
.

The bound can also depend on the dimension, but the rate with respect to n cannot be
worse than O

(
1
n

)
(so O

(
logn
n

)
is not allowed).

(b) If your upper bound from part (a) depended on the dimension d, it degrades severely as
d → ∞. Derive an upper bound that is dimension-free. Unlike part (a), the rate with
respect to n now can be O

(
logn
n

)
.

4. Suppose that P is a probability distribution over the unit Euclidean ball in Rd, and let
X1, . . . , Xn be i.i.d. samples with distribution P .
Using tools from class, prove that the average distance (considering all pairs) between n points
is tightly concentrated around its expectation. That is, show that

1(n
2
) ∑

1≤i<j≤n
‖Xi −Xj‖2

is tightly concentrated around

EX,Y∼P ‖X − Y ‖2.

Specifically, you should show that with probability at least 1− δ,∣∣∣∣∣∣ 1(n
2
) ∑

1≤i<j≤n
‖Xi −Xj‖2 − EX,Y∼P ‖X − Y ‖2

∣∣∣∣∣∣ = O

√ log 1
δ

n

 .
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