
Machine Learning Theory (CSC 482A/581B)

Problem Set 3 Due on Wednesday, March 13th, 7pm

Instructions:

• You must write up your solutions individually.

• You may have high-level discussions with 1 other student registered in the course. If you
discuss problems with another student, include at the top of your submission: their name,
V#, and the problems discussed.

• Your must type up your solutions and are encouraged to use LaTeX to do this. For any
problems where you only have a partial solution, be clear about any parts of your solution
for which you have low confidence.

• Please submit your solutions via conneX by the due date of Wednesday, March 13th, 7pm.
This is a hard deadline.

Questions:

1. Let A be a learning algorithm (for a concept class C) satisfying the following property: for any
ε > 0, when A receives as input a training sample of size n(ε) (distributed according to P and
labeled according to some c ∈ C), it outputs a hypothesis f̂ which, with probability at least 1

2
over the training sample, satisfies the following risk guarantee:

PrX∼P
(
f̂(X) 6= c(X)

)
≤ ε.

Now, let δ ∈ (0, 1/2). Devise a learning algorithm that, using a training sample of size
p(n(ε), ε, δ) (distributed according to P and labeled according to some c ∈ C), returns a hy-
pothesis which, with probability at least 1− δ over the training sample, has risk at most ε.
Your algorithm may call A as a sub-procedure. The function p(n(ε), ε, δ) should be linear in
n(ε), polynomial in 1

ε , and polynomial in log 1
δ .

For extra credit: In addition, ensure that p only grows linearly in 1
ε .

2. In AdaBoost, distribution Dt is updated to distribution Dt+1 via

Dt+1(j) = Dt(j)e−αtyjht(xj)

Zt
for j ∈ [n],

with αt = 1
2 log 1−εt

εt
and εt = Prj∼Dt (ht(Xj) 6= Yj).

This update increases the weight of examples on which ht made a mistake. We thus should
expect ht to perform poorly under distribution Dt+1. Show that

Prj∼Dt+1 (ht(Xj) 6= Yj) = 1
2 .
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3. Let H be a set of classifiers, and consider the set of hypotheses F used by AdaBoost when run
for T rounds with a weak learner that outputs hypotheses in H:

F :=
{
x 7→ sgn

(
T∑
t=1

αtht(x)
)

: α ∈ RT , ht ∈ H, t ∈ [T ]
}

;

technically, AdaBoost only uses nonnegative weights, but we will consider the simpler case
above where each αt ∈ R.
Recall that the growth function of F is defined as

ΠF (n) = sup
(x1,...,xn)∈Xn

∣∣∣{(f(x1), . . . , f(xn)
)

: f ∈ F
}∣∣∣

(a) Suppose that |H| is finite and F is defined in terms of this H. Prove that

ΠF (n) ≤ |H|T
(
en

T

)T
.

(b) Suppose instead that VCdim(H) = V and F is defined in terms of this H. Prove that

ΠF (n) ≤
(
en

V

)TV (en
T

)T
.

(c) We now consider an implication of the above result. Using the above and an argument
similar to (but much simpler than) the compression bound-based argument from class, it
is possible to show the following bound:

Given as input a training sample of size n, if AdaBoost is run for T rounds with a
weak learner that outputs hypotheses in H with VCdim(H) = V , then it returns
a hypothesis f̂ which with probability at least 1− δ satisfies

PrX∼P
(
f̂(X) 6= c(X)

)
≤ 1
n

n∑
j=1

1
[
f̂(Xj) 6= c(Xj)

]
+C

√
TV logn+ log 1

δ

n
,

for a universal constant C > 0.
Suppose that this bound is also tight, so that the inequality is sometimes also an equal-
ity. Explain in words how this bound demonstrates the usual tradeoff between model
complexity and estimation error, and comment on whether or not AdaBoost can overfit.
Also, comment on whether or not the above bound can be tight if the weak learner always
obtains an edge of at least γ = 1

4 (and if not, explain why not).
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