
Machine Learning Theory (CSC 431/531) - Lecture 14

Nishant Mehta

1 Computational hardness of agnostically learning halfspaces
In the problem of efficiently agnostically learning halfspaces over Rd, the goal is to learn a hypothesis
(not necessarily a linear separator) from a training sample which, with probability at least 1 − δ,
obtains risk at most ε in excess of the best linear separator using runtime polynomial in 1

ε , 1
δ , and

the dimension d. If the learning algorithm is restricted to be a proper learner (which may only
output a halfspace), the problem is known to be NP-hard; moreover, the problem is NP-hard even
to approximate: obtaining risk ε + α · R(f∗) for some constant α is NP-hard.1 One wonders if
the situation might change if we allow improper learners, but, at least under prevailing complexity
assumptions on the hardness of various problems, the problem continues to be computationally
hard.

On the other hand, in the realizable case (where there is a linear separator that perfectly classifies
the data), one can use linear programming to efficiently identify an empirical risk minimizer. Using
our risk bounds based on VC dimension (which is d + 1 in this case) and sufficiently many samples
(polynomial in the same 3 quantities as above), we can be assured that any such minimizer has
risk at most ε with high probability. While this may seem like progress, it turns out that we can
do much better from the statistical perspective when the data is separable by some margin γ.

2 Margin Bounds
When learning linear classifiers in the mistake bound model, we saw that data that is linearly
separable with a large margin γ can be learned with a mistake bound whose scaling with γ is
1

γ2 . In short, a larger margin guarantees that Perceptron makes fewer mistakes. An algorithm
obtaining a small mistake bound could in turn be converted into an algorithm for the statistical
learning setting which obtains a hypothesis with correspondingly low risk. Let us turn now to the
statistical learning setting. Suppose that we have a training set which is linearly separable with
some margin γ. It is not hard to see that there are infinitely many linear separators that obtain
zero training error, and thus there are infinitely many empirical risk minimizers. However, as we
will see shortly, not all empirical risk minimizers are created equal: those linear separators that
achieve large margin admit much smaller risk bounds as a result.

We will begin by deriving a generalization error bound that is small when an algorithm has
learned a linear separator that achieves large margin on most of the examples. Concretely, con-
sidering γ as a tuning parameter, the bound will be best when γ is large and when, for all but a
small number of examples, the margin achieved by the linear separator is at least γ. Conversely,
the bound will degrade either when there are few examples for which we achieve margin γ or when
γ gets smaller.

1See (Daniely, 2015) for more details, including hardness results for improper learning.
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Before continuing, it is important to formally define the margin. The attentive reader may
remember that we already saw a definition of the margin near the beginning of the course (when
we covered the Perceptron algorithm); however, that definition assumed that the bias term b is equal
to zero. The definition below will include the bias term. That said, in deriving our generalization
bound, we will again ignore the bias term to keep the derivation simple and focused on the core
ideas; for more information, see the remark at the end of this section.

The geometric margin. Let X = Rd and Y = {−1, 1}, and take H to be the set of nonhomo-
geneous linear separators {

x 7→ sgn(⟨w, x⟩ + b) : w ∈ Rd, b ∈ R
}

.

Each classifier in H can be identified with a separating hyperplane{
x ∈ Rd : ⟨w, x⟩ + b = 0

}
. (1)

Let us use (w, b) to refer to the corresponding hyperplane. A useful observation that we will often
use is that the hyperplane (w, b) is invariant to scaling w and b by the same positive constant. That
is, for any α > 0, replacing w and b by αw and αb gives the same set in (1).

The (geometric) margin of a hyperplane (w, b) is defined as the minimum distance of the hy-
perplane to a correctly classified point in the training sample. For a given example xj , the distance
from xj to the hyperplane (w, b) is

|⟨w, xj⟩ + b|
∥w∥

. (2)

Assuming the example is correctly classified, this distance is the same as the margin the hyperplane
obtains on the example, which we write as

y(⟨w, xj⟩ + b)
∥w∥

.

From these formulas, we can easily see that this distance (and margin) is invariant to scaling w and
b by the same positive constant; this is not surprising, given that the hyperplane itself is invariant
to such scaling.

We are almost ready to see how to derive risk bounds that benefit from the learned hypoth-
esis obtaining large margin on most of the data. But first, recall the story of our Rademacher
complexity-based risk bounds in the case of classification with VC classes.

We began with a risk bound based on empirical Rademacher complexity:

For any (learned) classifier f̂ , with probability at least 1 − δ over the training sample,

E
[
1

[
Y ̸= f̂(X)

]]
≤ 1

n

n∑
j=1

1
[
Yj ̸= f̂(Xj)

]
+2R̂n(ℓ0−1 ◦ H) + O

√
log 1

δ

n

 . (3)

We then used the very special relationship

R̂n(ℓ0−1 ◦ H) = 1
2R̂n(H), (4)
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which was useful because we could then bound R̂n(H) via the growth function (which in turn is
bounded in terms of the VC dimension), yielding the final bound

E
[
1

[
Y ̸= f̂(X)

]]
≤ 1

n

n∑
j=1

1
[
Yj ̸= f̂(Xj)

]
+O

√
VCdim(H)

n

 + O

√
log 1

δ

n

 .

Unfortunately, when the dimension d is large, this bound scales like O(
√

d/n). But this is really
the best that we can hope for in a worst-case scenario. To see one reason why the above approach
cannot be used to get margin-dependent bounds, let us look at (3). In this expression, we see the
appearance of the function class H. Because each hypothesis f ∈ H computes the sign of ⟨w, x⟩+b,
we lose all information about the magnitude of ⟨w,x⟩+b

∥w∥ ; this magnitude information is critical to
keep around if we care about the margin. We therefore will proceed differently.

A first important step is to work with an analogue of H that avoids taking the sign, hence
retaining magnitude information. To this end, for any hyperplane (w, b), let fw,b be the real-valued
predictor defined as

fw,b(x) = ⟨w, x⟩ + b

∥w∥
.

Next, we define the normalized class F1 as

F1 := {fw,b : w ∈ Rd, b ∈ R}.

The normalization by ∥w∥ present in the definition of fw,b can equivalently be viewed as scaling w
and b together so that w has unit norm; recall that such scaling does not change the hyperplane
(and hence does not change the margin achieved on any example). Moreover, the normalization is
convenient because the margin achieved by (w, b) on a correctly classified example (x, y) may now
be expressed as yfw,b(x).

Formally, to work with F1 rather than H, we need to extend the zero-one loss to accommodate
real-valued predictions. To this end, from this point onwards, we define the zero-one loss as a
mapping from {−1, +1} × R to {0, 1}, defined as ℓ0−1(y, ŷ) = 1 [yŷ ≤ 0]. Written this way, the
zero-one loss is a member of a general family of losses known as margin losses.

Definition 1 (margin loss). A loss function ℓ : Y × R → R is a margin loss if it can be expressed
in the form ℓ(y, ŷ) = Φ(yŷ) for some function Φ : R → R.

We can express the zero-one loss as a margin loss using the function

Φ0−1(t) = 1 [t ≤ 0] .

We now proceed to derive a risk bound that improves with the margin using two key ingredients
infused into a Rademacher complexity-based approach:

1. We will try to upper bound the risk under the zero-one loss by the risk under a carefully-
selected Lipschitz loss whose Lipschitz constant is inversely proportional to the margin. If
we are successful, we will avoid the VC dimension-based upper bound on the Rademacher
complexity of a set of classifiers. Instead, we will deal with the Rademacher complexity of
loss-composed real-valued predictors (where the loss is the aforementioned Lipschitz loss that
we will design).
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2. We will upper bound the Rademacher complexity of the set of these loss-composed real-valued
predictors by using results from the last lecture. Namely, we will use the result that lets us
peel off the loss function and replace it with a Lipschitz constant (which gives the dependence
on the margin), after which it remains to bound the Rademacher complexity of a class of linear
predictors (which we already did last lecture).

Now, consider some example (x, y) that is correctly classified by some fw,b ∈ F1 with margin
at least γ > 0. Then

yfw,b(x) = y (⟨w, x⟩ + b)
∥w∥

≥ γ. (5)

The zero-one loss of fw,b on this example is clearly zero since 1 [yfw,b ≤ 0] = 0. Moreover, even
if we were to increase the threshold for correct classifications to just under γ, i.e., 1 [yfw,b < γ],
the loss is still zero. By making this change, we now are free to “charge” for errors by linearly
interpolating between the threshold γ and the threshold 0. This linear interpolation gives rise to a
particularly useful subclass of margin losses known as “ramp losses.”

The γ-ramp loss is the margin loss defined via the function

Φγ(t) =


0 if t ≥ γ

1 − t
γ if 0 < t < γ

1 if t ≤ 0.

Why is the γ-ramp loss useful in developing a margin bound? From (5), if fw,b classifies (x, y)
with margin at least γ, then Φγ(yfw,b(x)) = 0, so there is a clear link between the γ-ramp loss
and correctly classifying an example with margin γ. Moreover, as t = yfw,b(x) decreases from γ to
zero, Φγ(t) increases at the rate of 1

γ . Thus, Φγ is 1
γ -Lipschitz, and, consequently, the γ-ramp loss

is 1
γ -Lipschitz in its second argument.
A useful observation is that the zero-one loss is upper bounded by the γ-ramp loss for any γ > 0.

Consequently, we have for any (real-valued) hypothesis f that

E
[
Φ0−1

(
Y f(X)

)]
≤ E

[
Φγ

(
Y f(X)

)]
. (6)

This is incredibly useful, as we now can upper bound the risk under γ-ramp loss using our
Rademacher complexity-style analysis, and whatever bound we obtain will also be an upper bound
on the risk under zero-one loss

Everything is now in place to obtain a risk bound that depends on the margin. From the
uniform convergence bound based on empirical Rademacher complexity (and using (6)), it holds
with probability at least 1 − δ that for all f ∈ F1,

E
[
Φ0−1

(
Y f(X)

)]
≤ E

[
Φγ(Y f(X))

]
≤ 1

n

n∑
j=1

Φγ(Yjf(Xj)) + 2R̂n(Φγ ◦ F1) +

√
2 log 2

δ

n

≤ 1
n

n∑
j=1

Φγ(Yjf(Xj)) + 2
γ

R̂n(F1) +

√
2 log 2

δ

n
.

Next, just like I mentioned we would do, we adopt the simplifying assumption that b = 0. Since
we are in the homogeneous case, from our upper bound on the Rademacher complexity of linear

4



prediction classes (stated in the last lecture), we have

R̂n(F1) ≤
maxj∈[n] ∥Xj∥

√
n

,

where we used the fact that ∥w∥2 = 1 for all fw,b ∈ F1.
Thus, we have the following risk bound: with probability at least 1 − δ, for all f ∈ F1,

E [1 [Y f(x) ≤ 0]] ≤ 1
n

n∑
j=1

Φγ(Yjf(Xj)) +
2 maxj∈[n] ∥Xj∥

γ
√

n
+

√
2 log 2

δ

n
. (7)

Lastly, if we wish to make the bound more interpretable, we can use the fact that Φγ(t) ≤
1 [t < γ], where we call the margin loss defined by threshold γ the γ-margin error.

Then we have, for any γ > 0, with probability at least 1 − δ, for any f ∈ F1,

E [1 [Y f(x) ≤ 0]] ≤ 1
n

n∑
j=1

1 [Yjf(Xj) < γ] +
2 maxj∈[n] ∥Xj∥

γ
√

n
+

√
2 log 2

δ

n
.

Consider either of the above bounds. The bound is valid for any choice of γ, as long as the
choice is made before seeing the data. In practice, we would like to have a valid bound which holds
for the particular, data-dependent choice of γ that minimizes the bound. We leave obtaining this
bound as a simple exercise.

An analysis that does not ignore the bias term. Handling the case of general b (i.e., the
nonhomogeneous case) is rarely discussed. A common, textbook approach to handle the nonhomo-
geneous case is to add an extra dummy dimension to each input x which always takes the value 1
(so that we also increase w by one dimension, and the last component of w now plays the role of b),
but this transformation can have a drastic effect on the norm of w and hence on the margin. There
is a proper treatment of the nonhomogeneous case, i.e., a result that does not introduce a dummy
dimension nor do anything else that would change the margin. This satisfying result is Theorem
15 of Hanneke and Kontorovich (2019), whose proof does not involve all that much extra effort.

3 An algorithmic approach to minimize the margin bound
We have now worked out risk bounds that depend on the margin. Focusing on the first bound,
(7), let us think about designing an algorithm that minimizes the bound; that is, using the data
we have observed, we would like to select a pair (w, b) and a value for γ that minimizes the bound
in (7). There are two challenges here:

• The loss function, the γ-ramp loss, has a parameter γ. So, different choices of γ lead to
different losses. It would be convenient if we could somehow separate γ from the loss function.
It turns out that we can achieve this separation; in the process, we will introduce a different
regularization parameter, but this new parameter is more standard in machine learning and
optimization.

• Ramp losses are non-convex. Therefore, even for a fixed value of γ, in general we will not be
able to efficiently minimize the bound. Our solution to this problem is a simple application
of an idea called convex relaxation. In a convex relaxation, we shift from a non-convex
optimization problem to a convex optimization problem; in this case, we will do so by upper
bounding the ramp loss by something called the hinge loss.
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Regarding the first challenge, suppose that on some training example (x, y), we have Φγ(yfw,b(x)) =
0. By definition of Φγ , this is the same as

y · ⟨w, x⟩ + b

∥w∥
≥ γ,

which may be rewritten as

y(⟨w, x⟩ + b) ≥ γ∥w∥.

Now, recalling that we are free to set γ however we wish in the bound (7), suppose we set γ as 1
∥w∥ .

Then the above becomes

y(⟨w, x⟩ + b) ≥ 1.

Now, observe that the above inequality is equivalent to Φ1(y(⟨w, x⟩+b)) = 0. Therefore, by making
the choice γ = 1

∥w∥ , minimizing the bound (7) is the following problem:

minimize
w,b

1
n

n∑
j=1

Φ1(Yj(⟨w, Xj⟩ + b)) +
2 maxj∈[n] ∥Xj∥

√
n

· ∥w∥,

where we dropped the last term in (7) since it only depends on δ and n.
Now, since γ has been replaced by 1

∥w∥ , it would be convenient if we had control over the norm
of w. This can be achieved by introducing a regularization parameter λ > 0 as follows

minimize
w,b

1
n

n∑
j=1

Φ1(Yj(⟨w, Xj⟩ + b)) + λ∥w∥;

note that we dropped the coefficient 2 maxj∈[n] ∥Xj∥√
n

since this can be handled by λ.
We make two last adjustments. First to control the size of ∥w∥, we can instead penalize by the

squared norm ∥w∥2; this is more convenient in terms of optimization. Next, and this is a major
change: because the ramp loss is non-convex, in general the empirical risk under the ramp loss also
is non-convex. In order to obtain a convex loss function, we will instead use the hinge loss, which
upper bounds the 1-ramp loss. The hinge loss is defined

ℓhinge(y, f(x)) = max {0, 1 − yf(x)} .

The hinge loss can be expressed as a margin loss via the choice Φhinge(t) = max{0, 1 − t}. By
drawing a picture, it is easy to see that Φ1(t) ≤ Φhinge(t) for all t ∈ R. Taking into account
these two changes, we arrive at a problem known as the soft-margin support vector machine (SVM)
problem:

minimize
w,b

1
n

n∑
j=1

ℓhinge(Yj , ⟨w, Xj⟩ + b) + λ

2 ∥w∥2.

This problem is an adaptation of a problem known as the hard-margin SVM problem. For historical
reasons, let us take a brief detour to introduce the hard-margin SVM problem.
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The hard-margin version involves minimizing the norm of w subject to the constraint
that the hinge loss on every example is zero. A direct translation of this statement
(while still using the squared norm of w) gives

minimize
w,b

1
2∥w∥2

subject to ℓhinge(yj , ⟨w, xj⟩ + b) = 0, j ∈ [n].

However, this problem is usually written as

minimize
w,b

1
2∥w∥2

subject to yj(⟨w, xj⟩ + b) ≥ 1, j ∈ [n].

Coming back to the soft-margin SVM problem, we can see that as λ increases, the optimization
objective encourages ∥w∥ to be smaller. Keeping in mind the setting γ = 1

∥w∥ (which is inherent
to our derivation of the soft-margin SVM problem), larger λ means smaller ∥w∥ and hence larger
margin γ. Finally, remember that the soft-margin SVM problem is simply the technique that we
use to try to get a good generalization error bound of the form (7). Here is a practical theory
approach one can use:

1. For some choice of λ > 0, solve the soft-margin SVM problem, yielding solution (w, b).

2. Set γ = 1
∥w∥ , and apply the bound (7). Note that this step requires having established a

version of (7) that holds simutaneously for all values of γ.

Now, what value of λ should we use? One strategy is to try many values of λ, each one giving a
different (w, b), and then select the λ for which our bound (7).
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