
Machine Learning Theory (CSC 431/531) - Lectures 15 and 16

Nishant Mehta

1 Prediction with expert advice
In the game of prediction with expert advice, there is an action space A, an outcome space Y, a
loss function ℓ : Y × A → R mapping each a given action a ∈ A and outcome y ∈ Y to a loss
ℓ(y, a). At the start of each round, each of K experts provides Learner with advice in the form of
a suggested action from A. Learner then aggregates these actions in some way, producing its own
action in A. Finally, Nature selects an outcome, and Learner and each expert suffer loss according
to their respective actions and the outcome. The goal of Learner is to ensure that its regret over
T rounds is small, where the regret is defined as the amount by which Learner’s cumulative loss
exceeds the cumulative loss of the best action in hindsight. The game protocol is given below.

Algorithm 1: Prediction with Expert Advice
for t = 1 → T do

Nature plays expert advice fj,t ∈ A for each expert j ∈ [K] and reveals the advice
(f1,t, f2,t, . . . , fK,t) to Learner

Learner plays action at ∈ A
Nature plays outcome yt ∈ Y and reveals it to Learner
Each expert j ∈ [K] suffers loss ℓ(yt, fj,t) and Learner suffers loss ℓ(yt, at)

end

Note that Nature controls both the experts and the outcomes. In sequential prediction problems,
the strength of the adversary (Nature) can vary; the adversary can be either:

• oblivious - Nature knows which algorithm Learner is using, but Nature must commit to its
entire sequence of expert advice and outcomes before Learner takes its first action.

• non-oblivious or adaptive - At any point in time, Nature can make its choice (whether expert
advice or outcome) based on all of Learner’s previous actions.

We will make no assumptions about Nature: Nature will be a non-oblivious adversary. Anytime
Nature makes a selection, it can do so using all the information revealed thus far. To be clear, the
expert advice fj,t for any expert j can be selected with knowledge of a1, a2, . . . at−1, while outcome
yt can be selected with the same knowledge as well as at.

The regret takes the form

RT :=
T∑

t=1
ℓ(yt, at) − min

j∈[K]

T∑
t=1

ℓ(yt, fj,t).

That is, the regret is simply Learner’s cumulative loss minus the cumulative loss of the best
expert in hindsight. Intuitively, regret quantifies how much sadness Learner feels for not having

1

always played the best action in hindsight. A basic demand in online learning is to have a learning
algorithm that is no-regret, meaning that the time-average of the regret 1

T RT goes to zero as T
approaches infinity, or, equivalently, the regret RT is sublinear in T . To see why such a requirement
is sensible, consider the case where the loss function takes values in some bounded range. Then
if Learner has regret growing linearly in T , up to a multiplicative constant it is doing no better
than constantly playing the worst action in hindsight! Another perspective comes from a stochastic
interpretation of the data. If we were in the statistical learning setting, then at a high level we may
think of the time-average of the regret as a form of risk, and the no-regret property is the analogue
of the excess risk decaying to zero as the sample size n approaches infinity.

Given Nature’s ability to adapt to the previous plays of Learner (and, in particular, to select
yt with knowledge of at), one wonders if any algorithm can always (i.e., against any strategy of
Nature) obtain sublinear regret for this problem. Without further assumptions on the action space
and loss function, Nature actually can ensure that any algorithm is forced to suffer linear regret.
However, if we assume the action space is convex, the loss function is convex with respect to its
second argument, and the losses are in some bounded range (e.g., the unit interval [0, 1]), then we
can show that the worst-case regret is sublinear.

Two common examples satisfying these assumptions are:

• Classification with absolute loss: Here, we take A = [0, 1], Y = {0, 1}, and ℓ(y, a) = |a − y|.

• Classification with squared loss: We take A and Y as before and now set ℓ(y, a) = (a − y)2.

To simplify the presentation, we set up some notation. For any j ∈ [K] and t ∈ [T], let
ℓj,t = ℓ(yt, fj,t) denote the loss of expert j in round t, and let Lj,t = ∑t

s=1 ℓj,s denote expert j’s
cumulative loss at the end of round t. Also, for any t ∈ [T], denote Learner’s loss in round t
ℓ̂t = ℓ(yt, at), and denote Learner’s cumulative loss at the end of round t by L̂t = ∑t

s=1 ℓ̂s.

2 Exponentially Weighted Average Forecaster
The algorithm that we study for this setting is called the exponentially weighted average forecaster
(EWA forecaster); it works as follows. In each round, the algorithm maintains weights over the
experts, with wj,t = e−ηLj,t indicating the weight of the j th expert at the end of round t. In round
t, the forecaster predicts according to the following weighted average of the experts’ actions:

at =
∑K

j=1 wj,t−1 fj,t∑K
j=1 wj,t−1

.

It will be convenient to rewrite the above using normalized weights; to this end, we introduce the
probability vector pt ∈ ∆K , defined as

pj,t = wj,t−1∑K
i=1 wi,t−1

.

Using pt, we can re-express at as at = Ej∼pt [aj,t].
In later lectures, we may consider a time-varying learning rate. However, since the learning

rate η is currently constant throughout the rounds, we also can write an incremental update for
the weights for all j ∈ [K] by:

• initializing via wj,0 = 1;

• at the end of round t, incrementally updating via wj,t = wj,t−1 · e−ηℓj,t .

2

I emphasize that if the learning rate is not constant, then we should not using the incremental form
of the update; doing so can result in linear regret.

We are now ready to see an upper bound on the worst-case regret of the EWA forecaster.

Theorem 1. Assume A is convex, the loss function is convex in its second argument, and the losses
are in the range [0, 1]. For any learning rate η > 0, any sequence of expert advice (fj,t)j∈[K],t∈[T],
and any sequence of outcomes y1, . . . , yT , the regret of the EWA forecaster satisfies

L̂T − min
j∈[K]

Lj,T ≤ log K

η
+ Tη

8 .

In particular, setting η =
√

8 log K
T makes the upper bound

√
T log K

2 .

In order to prove this result, we will use a result called Hoeffding’s lemma, the key supporting
lemma for proving Hoeffding’s inequality.

Lemma 1 (Hoeffding’s lemma). Let X be a random variable satisfying E[X] = 0 and a ≤ X ≤ b.
Then for any λ ∈ R,

log E[eλX] ≤ λ2(b − a)2

8 .

The idea of the proof of Theorem 1 is to relate Learner’s cumulative loss to the cumulative
loss of a pseudo-strategy known as the Aggregating Pseudo-Algorithm (APA). A pseudo-strategy
is a strategy that might not be implementable in reality; in short, it might be “too good to be
true” (there might not be any algorithm which performs as well as the pseudo-strategy). Even so,
the APA provides a convenient frame of reference for the proof. Moreover, thinking in terms of
the APA will be very useful later when we consider specific types of losses for which much smaller
regret bounds can be established.

Since the APA might not be implementable, we will only describe the loss it suffers in each
round; that is, we will not describe an action the APA plays to actually realize that loss. In each
round t, the APA suffers the mix loss mt, defined as

mt = −1
η

log Ej∼pt

[
e−ηℓj,t

]
.

Let MT = ∑T
t=1 mt denote the cumulative mix loss up to round T . Let us get a first intuition about

the mix loss. Consider some fixed values for the losses ℓ1,t, . . . , ℓK,t. Among these losses note that
large losses contribute less to the expectation Ej∼pt

[
e−ηℓj,t

]
than do small losses due to presence

of the exponential function. Consequently, the mix loss mt can never be larger than the expected
loss Ej∼pt [ℓj,t]. In fact, as η approaches zero, the expected loss and mix loss are the same.

The high-level idea of the proof of Theorem 1 is to start with the regret decomposition

L̂T − min
j∈[K]

Lj,T =
(
L̂T − MT

)
︸ ︷︷ ︸

regret of EWA vs APA

+
(
MT − min

j∈[K]
Lj,T

)
︸ ︷︷ ︸

regret of APA

. (1)

The first term, L̂T − MT , is the regret of EWA relative to the APA. We control this term a bit
later, in Lemma 3. The second term, MT −minj∈[K] Lj,T , is the regret of the APA. The next lemma
shows that as long as the learning rate η is not too small, the APA’s regret is small.

3

Lemma 2. The regret of the APA is upper bounded as

MT − min
j∈[K]

Lj,T ≤ log K

η
.

Proof. We show that the cumulative mix loss (the cumulative loss of the APA) is never much worse
than the cumulative loss of the best expert in hindsight:

MT =
T∑

t=1
−1

η
log Ej∼pt [exp(−ηℓj,t)]

= −1
η

T∑
t=1

log
∑K

j=1 exp(−ηLj,t−1) exp(−ηℓj,t)∑K
j=1 exp(−ηLj,t−1)

= −1
η

T∑
t=1

log
∑K

j=1 exp(−ηLj,t)∑K
j=1 exp(−ηLj,t−1)

= −1
η

log
K∑

j=1
exp(−ηLj,T) + 1

η
log

K∑
j=1

exp(−ηLj,0)

≤ −1
η

log max
j∈[K]

exp(−ηLj,T) + 1
η

log
K∑

j=1
exp(−ηLj,0)

= min
j∈[K]

Lj,T + log K

η
,

where the fourth step is from telescoping and the inequality uses the fact that the summation of
nonnegative terms is at least as large as their maximum term.

Next, in order to bound L̂T − MT , it suffices to bound each term ℓ̂t − mt.

Lemma 3. Under the same assumptions as Theorem 1, we have for any t ∈ [T] that

ℓ̂t − mt ≤ η

8 .

Before proving the lemma, note that its implication

L̂T − MT ≤ Tη

8 ,

together with the decomposition (1) and Lemma 2, proves Theorem 1.

Proof (of Lemma 3). The proof is in two steps. First, by assumption, for any outcome yt, the loss
function is convex in its second argument. Therefore, Jensen’s inequality gives

ℓ̂t = ℓ
(
yt, Ej∼pt [fj,t]

)
≤ Ej∼pt

[
ℓ(yt, fj,t)

]
=: ht.

Note that ℓ̂t is the loss obtained by mixing “inside the loss”, i.e., by mixing the expert advice to
obtain a mixed action. On the other hand, the loss ht is the expected loss obtained by mixing
“outside the loss”, i.e., if Learner were to draw an expert according to distribution pt and then play
the selected expert’s advice as its own action.1

1The reason for the notation ht is that the algorithm Hedge — for an online learning setting called Decision-
Theoretic Online Learning (DTOL) — is precisely the algorithm that mixes outside the loss while still using the
exponential weights strategy. As we will see later, Hedge’s regret bound will be effortless given Theorem 1.

4

Then we have

ℓ̂t − mt ≤ ht − mt

= Ej∼pt [ℓj,t] + 1
η

log Ej∼pt [e−ηℓj,t]

= 1
η

log eη Ej∼pt [ℓj,t] + 1
η

log Ej∼pt [e−ηℓj,t]

= 1
η

log Ej∼pt [e−η(ℓj,t−Ej∼pt [ℓj,t])].

The last line may seem a peculiar way to rewrite the expression from the second line. The rewrite
is motivated by the fact that the random variable ℓj,t − Ej∼pt [ℓj,t] is centered, and so we may
bound this expression using Hoeffding’s lemma (Lemma 1). Note that the losses are in [0, 1] (and
shifting the losses by their expectation does not change the difference (b−a) in Hoeffding’s lemma).
Therefore, Hoeffding’s lemma implies that

log Ej∼pt [e−η(ℓj,t−Ej∼pt [ℓj,t])] ≤ η2

8 .

Consequently,

ℓ̂t − mt ≤ η

8 .

The proof of Theorem 1 curiously revolves around the notion of a mix loss, which is the loss
of the APA. Is it possible that under certain natural assumptions on the loss function that there
exists an algorithm which can always achieve loss no larger than the APA? As it turns out, the
answer is yes.

Definition 1 (Mixability). We say a loss is η-mixable if, for all P ∈ ∆(A), there exists an action
aP ∈ A such that

ℓ(y, aP) ≤ −1
η

log Ea∼P

[
e−ηℓ(y,a)

]
for all y ∈ Y.

Mixability is precisely the assumption that there exists a substitution function Σ: ∆(A) → A
which, given a mix loss based on mixing using a distribution P , outputs an actually playable action
Σ(P) = aP which, no matter the outcome y, has loss at most the mix loss. Momentarily, we will
see common examples of η-mixable losses for specific values of η. Before that, let us see how the
regret bound in Theorem 1 can be greatly improved under the assumption of η-mixability.

Let the Aggregating Algorithm (AA) be the same as APA except in each round t, it plays the
actual action Σ(pt). The following theorem is immediate.

Theorem 2. For some η > 0, assume the loss is η-mixable with substitution function Σ. Then,
for any sequence of expert advice (fj,t)j∈[K],t∈[T] and any sequence of outcomes y1, . . . , yT , the AA
run with substitution function Σ has regret at most

L̂T − min
j∈[K]

Lj,T ≤ log K

η
.

5

Remarkably, for η-mixable losses the regret is constant with respect to T . To let that sink in,
one could play a game for an indefinitely long period, and the regret of the AA will never grow
beyond the constant log K

η . One might again wonder: do η-mixable losses really exist? Again, the
answer is yes. We will focus on a subclass of mixable loss functions known as exp-concave loss
functions, for which the substitution takes a very simple form.

3 Exp-concave losses
Exp-concave loss functions are of interest for at least two reasons. First, they encompass several
well-known and widely-used loss functions, including squared loss, logistic loss, and log loss. Second,
they are mixable and hence the AA enjoys a constant regret bound for these losses.

Definition 2. We say that a loss function ℓ is η-exp-concave if, for each outcome y ∈ Y, the function
a 7→ e−ηℓ(y,a) is concave. Equivalently, ℓ is η-exp-concave if, for all y ∈ Y and all distributions P
over A,

Ea∼P

[
e−ηℓ(y,a)

]
≤ e−ηℓ(y,Ea∼P [a]). (2)

Note that (2) may be rewritten as

−1
η

log Ea∼P

[
e−ηℓ(y,a)

]
≥ ℓ(y, Ea∼P [a]),

which implies that Σ(P) = Ea∼P [a] is a substitution function. Therefore, if a loss is η-exp-concave,
it also is η-mixable; hence, Theorem 2 applies and the regret is at most log K

η .
Our first and simplest example is log loss. Prediction with expert advice with log loss is specified

by taking A = [0, 1], Y = {0, 1}, and

ℓ(y, a) = −y log a − (1 − y) log(1 − a).

Log loss is 1-exp-concave, as is readily verified by considering the two cases. For instance, if y = 1,
then the function

a 7→ e−ℓ(1,a) = elog a = a

is clearly concave.
Our second example is squared loss, with A = Y = [0, 1] and ℓ(y, a) = (a − y)2. In order

to establish the exp-concavity of squared loss, we will use an alternate characterization of exp-
concavity. For the time being, we restrict to one-dimensional actions a for simplicity. Take X ⊂ R;
it turns out that twice-differentiable function g : X → R is concave if g′′(x) ≤ 0 for all x ∈ X . Now,
using the definition of η-exp-concavity, we see that a function f : X → R is η-exp-concave if and
only if

η2(f ′(x))2e−ηf(x) − ηf ′(x)e−ηf(x) ≤ 0 for all x ∈ X ,

which is equivalent to the condition

η(f ′(x))2 ≤ f ′′(x) for all x ∈ X .

6

Returning to the example of squared loss, we can verify that the squared loss is η-exp-concave if
and only if

η (2(a − y))2 ≤ 2 for all a, y ∈ [0, 1],

or equivalently,

(a − y)2 ≤ 1
2η

for all a, y ∈ [0, 1].

This condition is satisfied for η = 1
2 , and so the squared loss is 1

2 -exp-concave.

4 Decision-theoretic online learning
We now introduce the setting of decision-theoretic online learning (DTOL). This setting is a very
important special case of prediction with expert advice. The DTOL protocol unfolds as follows.

Algorithm 2: Decision-Theoretic Online Learning
for t = 1 → T do

Learner plays probability distribution pt ∈ ∆K

Nature plays loss vector ℓt = (ℓ1,t, . . . , ℓK,t)⊤ ∈ [0, 1]K and reveals it to Learner
Each expert j ∈ [K] suffers loss ℓj,t and Learner suffers loss ⟨ℓt, pt⟩

end

This setting could be thought of as “prediction with expert advice without the expert advice”.
Learner never gets to observe each expert’s action (advice), but it still gets to observe each expert’s
loss. As such, Learner cannot mix the advice of the experts — it cannot mix inside the loss
— but it can randomize over the experts — it can mix outside the loss. The interpretation of
⟨ℓt, pt⟩ = Ej∼pt [ℓj,t] is then Learner’s expected loss if it randomly selects expert j with probability
pj,t. Alternatively, if Learner is allocating a fixed sum of money across the experts, then pt specifies
how Learner divides its money among the experts, and ⟨ℓt, pt⟩ is Learner’s actual (not expected)
loss.

Let us see how DTOL is a special case of prediction with expert advice. In prediction with
expert advice, we take action space A = ∆K and outcome space Y = [0, 1]K . Next, for given action
at ∈ A and outcome yt ∈ Y — which we may view as probability vector pt ∈ ∆K and loss vector
ℓt ∈ [0, 1]K respectively — the loss is ℓ(yt, at) = ⟨yt, at⟩ = ⟨ℓt, pt⟩. That is, for a fixed outcome,
the loss function is linear in the action. Finally, each expert j ∈ [K] uses the constant strategy
of setting (for all t) fj,t equal to ej ; here, ej is the j th standard basis vector in RK . This choice
satisfies ℓ(yt, fj,t) = ℓ(ℓt, ej) = ⟨ℓt, ej⟩ = ℓj,t, as desired.

What regret can Learner hope to acheve in DTOL? Since the losses are in [0, 1], the loss function
is convex in its second argument (recall that linear functions are convex), and the action space is
convex, Learner can use the EWA forecaster. Our regret bound Theorem 1 applies, and so for all
sequences of loss vectors, the regret is at most

√
T log K

2 .
It is a bit clunky to view the algorithm as the EWA forecaster for prediction with expert advice

in the special case of DTOL. For simplicity, we directly present the algorithm, which is known as
Hedge, below.

7

Algorithm 3: Hedge
Input: η > 0
Set wj,0 = 1 for j = 1, . . . , K
for t = 1 → T do

Set pj,t = wj,t−1∑K
i=1 wi,t−1

for j = 1, . . . , K

Observe loss vector ℓt from Nature
Suffer loss pt · ℓt

Set wj,t = wj,t−1e−ηℓj,t for j = 1, . . . , K

end

For convenience, we also summarize Hedge’s regret guarantee.

Theorem 3. Let Hedge be run with learning rate η =
√

8 log K
T . Then, for all sequences of loss

vectors ℓ1, . . . , ℓT ,

L̂T ≤ min
j∈[K]

Lj,T +
√

T log K

2 .

8

	Prediction with expert advice
	Exponentially Weighted Average Forecaster
	Exp-concave losses
	Decision-theoretic online learning

